

Щитовой измерительный и регистрирующий прибор

Сопроводительная документация

Версия ПО 7.х

СОДЕРЖАНИЕ

1. KF	АТКОЕ ОПИСАНИЕ	4
1.1 П	одключение прибора	4
1.2 H 1.2.1	астройка прибора Разрешение / блокирование редактирования параметров	5 8
1.3 И 1.3.1 1.3.2 1.3.3	ндикация измеряемых величин Схема включения звезда ("Star") Схема включения треугольник ("Delta") Схема Арона	8 9 10 10
2. ПС	ОДРОБНОЕ ОПИСАНИЕ	.11
2.1 0	сновные характеристики	11
2.2 K	онструкция прибора	11
2.3 0	писание работы	12
2.3.1	Измерение электрических величин	12
2.3.	I.1 Подключение	12
2.3.	1.2 Настроика приоора	13
2.3.	 1.3 Способ измерения и записи	14 омпьютере
2.3.1	1.5 Вычисление средних мощностей на основе записанных средних значений U, I, PF.	23
2.3.2	Измерение температуры	24
2.3.2	2.1 Подключение	24
2.3.2	2.2 Настройка прибора	24
2.3.3	Выходные реле	24
2.3.3	3.1 Подключение	24
2.3.3	3.2 Функционирование	25
2.3.3	3.3 Настройка прибора	27
2.3.3	3.4 Ручное управление состоянием реле	27
2.3.4	Синхронизация контура реального времени	27
2.3.4	4.1 Подключение	28
2.3.4	1.2 Работа	28
2.3.4	1.3 Настройка	28
2.3.5	Импульсные выходы	28
2.3.	5.1 Подключение	28
2.3.	5.2 Работа	29
2.3.	5.3 Настройка	29

3. УПРАВЛЕНИЕ С ПОМОЩЬЮ КОМПЬЮТЕРА30

3.1 Л	инии коммуникации	
3.1.1	Местная линия коммуникации (LOCAL)	
3.1.2	Дистанционная линия коммуникации (REMOTE)	
3.1.2	2.1 Интерфейс RS-232	
3.1.2	2.2 Интерфейс RS-485	
3.1.2	2.3 Интерфейс CAN	

3.1.2.5		
	Концевые резисторы	32
3.1.2.6	Протоколы коммуникации дистанционной линии	
3.2 Опі	исание программного обеспечения СЕТІS32 для приборов "SMZ 33"	34
3.2.1	Настройка стандартных диапазонов индикации	34
3.2.2	Подключение прибора к РС через местную линию (LOCAL)	35
3.2.3	Добавление нового прибора в базу данных	35
3.2.4	Настройка параметров прибора	36
3.2.4.1	Основные параметры прибора	36
3.2.4.2	Дополнительные параметры прибора	37
3.2.5	Настройка записи	38
3.2.5.1	Общие данные	38
3.2.6	Напряжение, частота, температура	40
3.2.7	Токи, мощности	40
3.2.8	ТНD, гармоники	41
3.2.9	Настройка записи дневных профилей	42
3.2.10	Высылание настроек записи в прибор	43
3.2.11	Перенос записанных данных в компьютер	43
3.2.12	Работа с измеренными кривыми	44
3.2.13	Отчет об измерении	45
3.2.14	Вычисление мощностей	45
3.2.15	Экспорт данных в файл DBF	45
3.2.16	Управление электросчетчиком	45
.3 Опі	исание программы RETIS для прибора "SMZ 33"	47
3.3.1	Исходные настройки	47
3.3.2	Подключение прибора к РС и добавление его в базу данных	47
3.3.3	Дата-база приборов (Список приборов)	48
3.3.4	Настройка параметров прибора	49
3.3.4.1	Базовые (основные) параметры прибора	
3.3.4.2	И Дополнительные параметры прибора	50
3.3.5	Настройка записей	51
3.3.6	Работа с актуальными данными	
3.3.7	Управление электросчетчиком	54
.4 Про	облемы при управлении прибором через компьютер, их возможные причин	ыиспо
странения	1	55
<u>CEI</u>		FC
UEI		50
TEX	(НИЧЕСКИЕ ХАРАКТЕРИСТИКИ	58

1. Краткое описание

В данной главе приведено краткое описание схемы подключения прибора и основные приемы работы с прибором, при типовом способе подключения. Подробное описание прибора, всех его функций и возможных способов подключения, размещено в следующих главах.

1.1 Подключение прибора

Питающее напряжение прибора номинальным значением 230В или 115В (переменное, величина в зависимости от исполнения прибора) необходимо подключить к контактам разъема L (7) и N (8), через отключающий аппарат (выключатель – см. схему монтажа). Этот выключатель должен быть размещен непосредственно около прибора, и должен быть легко доступен персоналу. Отключающий аппарат должен быть обозначен как выключатель электроустановки. В его качестве можно использовать автоматический выключатель номинальным током 1A, при этом должно быть визуально обозначено его назначение и рабочие положения (символы «0» и «1» по ČSN EN 61010-1).

Измеряемые фазные напряжения подключаются на клеммы U1, U2, U3 (номера 10, 11, 12), общая клемма для подключения нулевого провода обозначена U_N (номер 9). Измеряемые напряжения рекомендуется подключать через предохранители 1А.

Рис. 1 : Подключение прибора

Токовые сигналы от измерительных трансформаторов тока номинальным током 5А или 1А необходимо подсоединить к парам клемм I1k, I1l, I2k, I2l, I3k, I3l (номера 1-2, 3-4, 5-6). При этом необходимо соблюсти их правильную ориентацию (выводы k,I – начало и конец обмоток).

Максимальное сечение присоединяемых проводников - 2,5 mm².

1.2 Настройка прибора

После подачи питающего напряжения прибор проведет внутреннюю диагностику и актуализацию внутренней датабазы измеренных данных. При этом на дисплее последовательно появятся следующие сообщения:

Потом появится первая группа измеренных величин, обычно это фазные напряжения U1, U2, U3, и данные на дисплее выглядят, например следующим образом (если напряжения и токи подключены):

На индикаторах L1 - L3 можно наблюдать актуальные измеренные значения, а на цифробуквенном индикаторе единицу измерения, или название величины. С помощью кнопок ▲ и ▼ (или Р и М) можно переключаться между отдельными измеряемыми величинами в соответствии с нижеприведенным на рис.2 алгоритмом.

Для индикации действительных значений напряжений, токов, и других величин, прибор необходимо настроить. Настройка прибора определяется так называемыми параметрами, среди которых, например тип подключенного напряжения (прямое измерение или через измерительные трансформаторы напряжения (ИТН) и коэффициенты этих ИТН), способ подключения напряжений и токов (звезда, треугольник, Арон), коэффициент измерительных трансформаторов тока (ИТТ), время и дата внутренних часов, тип и заводской номер прибора и т.д.

Параметры упорядочены в группы, обозначенные номерами, при этом каждая группа содержит один или более параметров.

Параметры индицируются после нажатия кнопки **Р** (кроме исключений, подробно указанных ниже). Сначала индицируется группа номер 1. На цифробуквенном индикаторе справа показан номер группы параметров (**P-01**), на цифровых индикаторах L1 - L3 показаны значения отдельных параметров выбранной группы.

KMB systems

SMZ 33

Отдельные группы параметров можно перелистывать кнопками ▲ и ▼. Перечень всех параметров приведен в таблице 1.

Группа	Инди-	Параметр		Диапазон	Примечание
парам.	катор	обозначение назначение		настройки	
0	L1	pswd	Доступ к редактированию (пароль)	/ Yes	См. описание блокировки редактиров.
1	L1	typU	Тип подключ. напряжений и токов	Star / Delta / Aron	звезда / треуг. / Арон
	L2	Unom / VTp	При прямом измерении - Unom / коэфф. ИТН – первичное напряжение ИТН	115-127-230- 254 V / 0,1÷400 kV	
	L3	VTs	коэфф. ИТН –вторичное	-/0,1kV	Редактирование в окне L2
2	L1	Pnom	Ном. Мощность. Измер. Узла [kVA]	1 ÷ 1000 kVA	
	L2	СТр	первичный ток ИТТ	5 ÷ 4000 A	
	L3	CTs	вторичный ток ИТТ	5/1A	
3	L1 L2	T04 T20	Температура при токе 4 mA Температура при 20 mA	-200 ÷ 3000 °C -200 ÷ 3000 °C	Должно быть T04 < T20
4	L1	addr	Адрес прибора (коммуникация через интерфейс)	1÷255 (1÷1023)	У прибора без интерфейса не индицируется
	L2	kBd / kbit	Скорость передачи данных по интерфейсу	0.6 ÷ 9.6 kBd (5÷1000 kbit)	Данные в скобках для CAN
	L3	ptcl	Протокол коммуникации	P0-P1n-P1e- P1o	KMB-Modbus RTU n-e-o
7	L1	R1cv	Тип управл. величины реле номер 1	U ÷ THDI	
	L2	R1dp	Знак отклонения управ. величины для активн. сост. 1. реле	under / over	
	L3	R1as	Активное состояние 1 реле	on / off	
8	L1	R1I%	Граница управл. величины 1 реле	1 ÷ 150 %	При неопред. значении работа реле отключена
	L2	R1h%	Гистерезис управл. величины 1 реле	0 ÷ 50 %	
	L3	R1bl	Время блокировки 1 реле [min.sec]	5 sec ÷ 60 min	
9,10			То же самое для 2 реле, подобно как группы 7,8		
12	L1	sync	Синхронизация времени	on / off	У приборов без встроенного
	L2	Erst	Обнуление электросчетчика и ¼hPmax	/ rst	электросчетчика не показывается

Табл. 1 : Перечень параметров

14	L1	N1/k	Коэффиц. импульсов 1	1 ÷ xxx [imp./k]	
			выхода		
	L2	N2/k	Коэффиц. импульсов 2	1 ÷ xxx [imp./k]	
			выхода		
	L3	Ntyp	Тип управляющей	AI / AE / RL /	
			величины 1 и 2 выходов	RC	
20	L1	time	Coct. RTC – HH.MM	-	
	L2	day	Coct. RTC – DD.MM	-	
	L3	year	Coct. RTC – RRRR	-	
30	L1	SMZ	Тип прибора	E,R,T, -2,-5,-C	
	L2	ser	Заводской номер	-	
	L3	ver.	(номер ошибки), версия ПО	-	

При типовом подключении обычно необходимо задать только коэффициент ИТТ. Способ настройки поясняет следующий пример:

Пример :

Токовые сигналы подключены через ИТТ с коэффициентом 150/5 А. Коэффициент ИТТ находится в группе номер 02, поэтому сначала заходим в эту группу. Нажатием кнопки **Р** зажжем светодиод у индикатора L1, а на цифробуквенном индикаторе появится надпись **Pnom**, говорящая о том, что на L1 показан параметр – номинальная мощность измеряемого узла.

Нажатием кнопки ▼ зажжем светодиод около L2. Данные СТр показывают, что этот параметр означает номинальный первичный ток ИТТ. Значение (в данном случае 500) необходимо исправить на 150, так что прежде всего введем этот параметр в режим редактирования долгим нажатием кнопки Р. Как только цифры замигают, кнопку отпустим, и кнопками ▲ и ▼ выберем требуемое значение параметра. Наконец, коротким нажатием кнопки Р выйдем из режима редактирования параметров.

Дальнейшим нажатием кнопки ▼ зажжем светодиод около L3, и данные CTs говорят о том, что речь идет о значении вторичного тока ИTT. Это значение отвечает требуемой настройке, так что его изменять не надо.

Наконец, коротким нажатием кнопки Р вернемся обратно на главную ветвь параметров, и далее можем либо вызвать следующую группу параметров, либо нажатием кнопки М вернуться на изображение актуальных значений (иначе этот возврат произойдет автоматически примерно через 30 секунд от последнего нажатия любой кнопки).

Подобным способом можно настраивать и остальные параметры.

1.2.1 Разрешение / блокирование редактирования параметров

Приборы поставляются в «разблокированном» состоянии, это значит, что параметры можно произвольно изменять вышеприведенным способом. После ввода прибора в работу, редактирование параметров можно «заблокировать», защитив тем самым прибор от возможных несанкционированных вмешательств.

Информацию о том, заблокировано редактирование параметров или же разрешено, можно найти в группе параметров номер 00 – в ней только одно активное окно L1, которое может принимать значения:

--- липароль еще не задан, редактирование параметров заблокировано

УЕ 5....(= да) пароль был правильно задан, можно редактировать параметры

Разрешенное (или заблокированное) состояние сохраняется в приборе и при отключении питающего напряжения.

В случае, если пароль не был задан правильно, параметры прибора изменять нельзя. Задание пароля проводится так же, как и редактирование параметров:

- 1. Переключить прибор на индикацию параметров нажатием кнопки **P** и вызвать группу параметров номер 00.
- Коротким нажатием кнопки Р выбрать в этой группе первый параметр в окне L1 при этом загорится светодиод у этого окна, а на цифробуквенном индикаторе появится имя параметра – pswd (password = пароль).
- 3. Нажать кнопку Р и удерживать ее до тех пор, пока данные в окне L1 не замигают при этом там отобразится случайное число. Для удобства объяснения предположим, что это будет число 1234, так что на дисплее будут мигающие данные 1234.
- 4. Осуществить следующую комбинацию четырех нажатий кнопок : ▼ , ▲ , ▲ , ▼. Данные в окне L1 последовательно изменятся на 1233 -1234 -1235 -1234 , так что по окончании комбинации будет такая же величина, что и в начале.
- 5. Нажать кнопку Р. На дисплее появится надпись *УЕ*, подтверждающая правильное задание пароля, и теперь параметры можно редактировать.

Число, показываемое при задании пароля, выбирается прибором случайно и на правильное задание пароля не влияет (служит для «обмана неприятеля»). Важным является только точное соблюдение указанной последовательности нажатий кнопок.

После правильного задания пароля редактирование параметров разрешено до тех пор, пока не будет снова заблокировано персоналом. Разрешенное (или заблокированное) состояние сохраняется в приборе и при отключении питающего напряжения.

Блокировка режима редактирования наступит после задания (умышленного) любой неправильной комбинации нажатия кнопок при вводе пароля.

1.3 Индикация измеряемых величин

С помощью кнопок можно перелистывать отдельные измеряемые величины, согласно схемы на Рис. 2.

1.3.1 Схема включения звезда ("Star")

Основные фазовые величины, такие как напряжение (U), ток (I), действительный коэффициент мощности (PF) и отдельные фазные мощности (P - активная, Q - реактивная, S - полная), можно показывать по фазам (U-I-PF, P-Q-S), или по величинам (U-U-U и т.д., P-P-P и т.д.); переключение проводится кнопкой М. В случае индикации по фазам, на цифробуквенном индикаторе будут поочередно появляться номер фазы (L1 - L3) и единица измерения, соответствующие данным на цифровом индикаторе, обозначенном светящимся светодиодом. При этом на цифровом индикаторе L1 показывается U (или P), на цифровом индикаторе L2 показывается I (или Q), а на L3 - PF (или S).

	Puc.	2 : I Ipo	смотр	измер.	яемых	велич	чин
--	------	-----------	-------	--------	-------	-------	-----

Подобным образом показываются трехфазные мощности 3P, 3Q и 3S. При этом кнопкой **М** можно переключать режим индикации – или в kW / kvar / kVA, или в процентах от номинальной мощности (заданной во второй группе параметров).

Наряду с фазными напряжениями, можно в самостоятельном окне наблюдать и линейные напряжения U12, U23 и U31.

Группу величин электрической работы можно просматривать только у приборов ряда «Е», оборудованных встроенным электросчетчиком. Такой прибор регистрирует по отдельности активную энергию потребленную (A+, import), активную энергию генерированную (отданную в сеть) (A+, export), реактивную энергию индуктивную (ArL), реактивную энергию емкостную (ArC), и все это в трех тарифных группах. Тарифные группы можно настроить в группе параметров номер 12. Далее, в этой группе можно наблюдать величину максимальной четвертьчасовой активной мощности (1/4hPm), включая время ее регистрации, обнаруженной за время от последнего обнуления - время последнего обнуления указано в последнем окне этой группы величин. Значения электрических работ A+, A-, ArL, ArC и четвертьчасового максимума можно обнулить в группе параметров номер 12.

Последние две группы величин показывают полное гармоническое искажение (THD) и уровень отдельных гармонических составляющих до 25 порядка в процентах, для отдельных фазных напряжений и токов.

Между отдельными окнами группы электрической работы и групп гармонических можно переключаться вперед и назад кнопками **М** и **Р**. В остальных группах нажатие кнопки Р вызовет переключение на режим индикации параметров.

1.3.2 Схема включения треугольник ("Delta")

При таком включении прибора в качестве базовых индицируются линейные напряжения, причем напряжение U12 на индикаторе L1, U23 на L2, а U31 на индикаторе L3. Поскольку в данной схеме средний нулевой проводник не подключен, то величины фазных напряжений (Upn) и других фазовых величин (мощности, PF, cos), вычисляются относительно потенциала, соответствующего геометрическому центру векторов подключенных напряжений («виртуальный ноль»).

1.3.3 Схема Арона

При данном способе подключения прибор измеряет и индицирует только два линейных напряжения: U12 (в окне L1) и U32 (в окне L3). То же самое действует и для индикация полного искажения THD и отдельных гармоник напряжения.

Токи измеряются и индицируются во всех фазах, сигналы от которых подключены к прибору.

Фазовые коэффициенты (косинус и PF) и мощности при таком подключении не имеют физического смысла, а потому не индицируются.

2. Подробное описание

2.1 Основные характеристики

Прибор предназначен для наблюдения и регистрации напряжения, тока, коэффициента мощности, частоты, мощности, электрической работы, гармонических составляющих и коэффициента полного искажения THD напряжения и тока, в трехфазных сетях низкого, высокого и сверхвысокого напряжения. Наряду с электрическими величинами прибор может измерять и регистрировать температуру.

Прибор оборудован тремя входами измерительных напряжений номинальным значением до 3х440В (перем.), и тремя полностью отделенными входами для токовых сигналов номиналом 1А/5А (с выхода ИТТ). Прибор в исполнении T, кроме того, содержит вход для подключения одного датчика температуры с выходом 4 – 20 мА. Питание прибора надо обеспечить от отдельного источника 115В (перем.) или 230В (перем.) / 40 – 80 Гц (зависит от исполнения).

Прибор измеряет действительные (истинные) эффективные значения (TRMS) токов и напряжений. Далее вычисляется как действительный коэффициент мощности (PF, lambda) для каждой фазы и трехфазный, так и фазовые коэффициенты основных гармонических составляющих (cos φ). Измерение уровня полного гармонического искажения (THD) напряжений и токов и значений отдельных гармоник проводится до 25 порядка.

Назначение двух встроенных реле с переключаемыми контактами можно запрограммировать в функции от измеряемых величин.

Приборы в исполнении "Е" имеют встроенный четырех-квадрантный трехфазный электросчетчик, поэтому наряду с основным назначением, можно их использовать в качестве вспомогательного счетчика. Кроме этого, данное исполнение имеет вход синхронизации (минута/четверть часа) и два импульсных выхода для передачи информации об активной или реактивной энергии.

Память емкостью 1MB и контур реального времени (с гарантированным питанием от внутреннего аккумулятора или батареи) позволяют осуществлять регистрацию измеренных данных. Их потом можно перенести на компьютер через местную линию связи RS-232 или, если прибор ею оборудован, то и через дистанционную линию связи (RS-232, RS-485, CAN),для дальнейшего просмотра и анализа. Программа CETIS, поставляемая вместе с прибором, позволяет архивировать, просматривать и сравнивать измеренные графики и проводить ряд других операций.

С помощью встроенной клавиатуры и индикаторов можно настроить базовые параметры прибора. Таким образом, можно его использовать как многофункциональный щитовой прибор и без применения компьютера.

2.2 Конструкция прибора

Прибор SMZ размещен в пластмассовом корпусе DIN 43700, предназначенном для монтажа на лицевую панель (дверь) силового шкафа. Размеры окна под крепление прибора 138 х 138 мм. После вставления в окно прибор фиксируется прилагаемыми зажимами.

Панель прибора содержит три числовых окна L1, L2, L3 и одно цифробуквенное окно типа LED, обеспечивающих хорошую различимость и при плохом освещении на расстоянии нескольких метров. Клавиатура с четырьмя кнопками служит для переключения между отдельными окнами индикации, и для настройки базовых параметров прибора. Для настройки параметров и передачи измеренных данных, прибор имеет местную линию связи RS-232, обозначенную **СОМ** (см. фото на обложке).

На задней панели расположено до пяти (в зависимости от исполнения прибора) разъемов для подключения измеряемых сигналов, выходных реле, импульсных выходов, временной синхронизации, и дистанционной линии связи (см.рис.3).

Максимальное сечение присоединительных проводов 2,5 mm².

Рис. 3 :Задняя панель прибора SMZ 33

2.3 Описание работы

2.3.1 Измерение электрических величин

2.3.1.1 Подключение

Примеры подключений по различным схемам соединений приведены в приложении.

2.3.1.1.1 Питающее напряжение

Прибор требует для своей работы питающее напряжение номинальной величиной 230 В (или 115В – от исполнения) частотой от 40 до 80Гц, максимальная потребляемая мощность 10 ВА. Напряжение питания подключается к клеммам 7 (*L*)) и 8(*N*). Один провод питающей цепи защищен внутри регулятора предохранителем T0,1L (или T0,2L).

Поскольку прибор не имеет собственного сетевого выключателя, необходимо в схеме подключения предусмотреть выключатель (см. схему подключения в приложении). Он должен быть размещен непосредственно у прибора и в случае необходимости быть легко доступным. Он должен быть обозначен как выключатель установки. В качестве выключателя можно использовать автомат на ток до 1А, при этом должна быть визуально обозначена его функция и состояния (знаками 0 и 1 согласно EN 61010-1).

2.3.1.1.2 Измеряемые напряжения

Измеряемые напряжения в случае схемы звезды присоединяются к выводам 10 (U1), 11 (U2), 12 (U3) и 9 (U_N, средний). Входы измеряемых напряжений гальванически отделены от входов напряжения питания.

В случае непрямого измерения через измерительный трансформатор напряжения (ИТН), необходимо в параметрах задать коэффициент его передачи (парметры **VT**).

При подключении напряжений по схеме треугольника, вывод 9 (U_N) обычно не используется – на нем создастся потенциал, равный геометрическому центру векторов подключенных напряжений.

В схеме Аарона напряжение фазы номер 2 подключается на вывод 9 (U_N), а вывод 11 (U2) отанется свободным.

Соединительные провода рекомендуется защитить, например плавкими предохранителями 1А. Различные типы подключения напряжений приведены в таблице:

Вывод	Обознач.	Тип подключения		
номер		Звезда	Треугольник	Схема Аарона
10	U1	Напряжение фазы 1	Напряжение фазы1	Напряжение фазы 1
11	U2	Напряжение фазы 2	Напряжение фазы 2	-
12	U3	Напряжение фазы 3	Напряжение фазы 3	Напряжение фазы 3
9	U _N	Средний провод	-	Напряжение фазы 2

Табл. 2 : Подключение измеряемых напряжений

2.3.1.1.3 Измеряемые токи

Токовые сигналы от измерительных трансформаторов тока (ИТТ) необходимо подсоединить к парам клемм 1-2 (I1k, I1l,) 3 – 4 (I2k, I2l,) 5 – 6 (I3k, I3l). Можно использовать ИТТ с номинальным вторичным током 5А или 1А. Коэффициент передачи ИТТ необходимо задать в параметрах при настройке прибора (параметры **CTp** и **CTs**).

При подключении ИТТ необходимо соблюсти их правильную ориентацию (выводы k, l – начало и конец обмоток), иначе не будут правильно вычисляться значения косинуса, мощности и электрической работы.

При использовании схемы Аарона, для измерения и вычисления трехфазного коэффициента мощности, трехфазных мощностей и электрической работы достаточно измерять только токи I1 и I3. Ток фазы номер 2 может быть подключен, но на измерение и вычисление указанных величин это влияния не оказывает.

Против случайного отсоединения и нежелательного разрыва токового контура соответствующий разъем защищен резьбовым соединением.

2.3.1.2 Настройка прибора

Для настройки предназначены группы параметров номер 1 и 2.

В группе 1 необходимо в окне L1 выбрать тип подключения (typU) из возможных вариантов -**STRR** (звезда), **DELT** (delta = треугольник) и **RRDN** (схема Аарона).

Далее, в окне L2 необходимо задать тип подключенного напряжения (парметры VT). При прямом измерении выставляем номинальное фазовое напряжение Unom в окне L2 на одно из типовых значений 115 - 127 - 230 - 254 V, а окно L3 при этом останется пустым. Правильная настройка Unom не имеет влияния на измерительные функции прибора, но она необходима для нормальной работы выходных реле и для статистической обработки измерений в программе CETIS32 (при настройке прибора с помощью программы CETIS32 величину Unom можно задать произвольно).

При подключении измеряемых напряжений через ИТН, зададим в окнах L2 и L3 номинальное первичное и вторичное напряжения ИТН в кВ (например при использовании ИТН 22кВ / 0,1кВ выбрать величины 22 и 0,1). Величина первичного напряжения ИТН служит одновременно как номинальное напряжение Unom для работы выходных реле и статистической обработки.

В группе параметров номер 2 можно настроить два параметра: номинальная мощность измеряемого узла и коэффициент передачи ИТТ. Номинальная мощность измеряемого узла (**Pnom**, например мощность питающего трансформатора) в kVA задается в окне L1. Эту величину надо задавать лишь в том случае, если мы хотим измерять нагрузку (мощности) не только в абсолютных единицах, но и в процентах номинальной мощности. В противном случае этот параметр настраивать не надо. Наоборот, коэффициент передачи ИТТ необходимо задавать всегда – номинальное значение первичного тока (**CTp**) задается в окне L2, а номинальное значение вторичного тока (**CTs**) выбирается между величинами **5** или **1** А в окне L3.

При настройке на схему звезды, измеряются три фазовых напряжения и три фазовых тока, в качестве дополнительной информации измеряются и линейные напряжения.

При настройке на треугольник, в качестве главных величин измеряются линейные напряжения, фазовые величины (напряжения, косинусы, PF, мощности), для информации также вычисляются, при этом надо уяснить, что эти фазовые величины определяются относительно «виртуального» потенциала, возникшего как геометрический центр векторов подключенных напряжений.

При настройке на схему Аарона измеряются только два линейных напряжения U12 (показано в окне L1) и U32 (в окне L3) и два тока I1 и I3.

Наряду с ручной настройкой, прибор можно настроить и с помощью компьютера в программе CETIS32. Процесс настройки приведен в разделе « УПРАВЛЕНИЕ С ПОМОЩЬЮ КОМПЬЮТЕРА».

2.3.1.3 Способ измерения и записи

Данный раздел поясняет принцип измерения и вычисления электрических величин. Знание этих принципов необходимо для правильной интерпретации и дальнйшей обработки результатов измерений.

2.3.1.3.1 Частота измерений, запись средних значений

Примерно каждые три секнды прибор проводит одноразовые измерения всех подключенных величин (за исключением THD и гармонических составляющих, см. опсиание далее).

Полученное мгновенное значение каждой величины прибор покажет на дисплее, а так же подвергнет обработке в соответствии с настройками записи: значение величины усредняет на интервале записи, либо определяет максимальное (или минимальное) значение, или последнее измеренное значение. В конце интервала записи необходимое значение сохраняется в памяти прибора.

При заполнении памяти прибора измеренными данными, дальнейшая работа его зависит от того, как был прибор настроен. Если не был выбран режим **Все время по кругу** (Циклическая запись), то при заполнении памяти прибор прекратит проводить дальнейшую запись, до тех пор, пока не будет настроен вновь. В противном случае, запись будет продолжаться таким образом, что вновь измеренными данными будут заменяться самые старые результаты измерений. Прибор, таким образом, будет содержать «самые свежие» графики настроенных величин, продолжительность которых зависит от размера памяти прибора.

2.3.1.3.2 Подготовка измерений напряжений и токов

Перед каждым измерением всех величин (т.е. каждые 3 сек.) сначала проводится измерение частоты на входе U1. На основании этой частоты будет определена актуальная длина волны измеряемого сигнала, которая будет использована при измерении и вычислении всех переменных сигналов, то есть всех напряжений и токов. Отсюда вытекает, что все измеряемые напряжения и токи должны иметь одинаковую частоту (или одинаковую частоту основной гармоники). Так же предполагается, что эта частота в течение одноразового измерения всех величин (то есть около 2 секунд) не меняется. В противном случае возникнет дополнительная погрешность.

2.3.1.3.3 Измерение напряжения

Прибор измерят действительное эффективное значение (TRMS). Предполагается измерение сигнала с преобладающей основной гармоникой частотой 42-80 Гц.

Прибор измеряет сигнал четырех подряд идущих периодов (обычно 4 х 20 = 80 мс), причем каждый период квантуется по уровню в 64 точках. Из четырех записанных периодов вычисляется среднее арифметичекое, и из возникшего таким образом среднего периода вычисляется эффективное значение по формуле

$$U_{eff} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} U_i^2} \qquad [V] \qquad [1]$$

U_{eff}...эффективное значение напряжения

U_i...измеренный квант напряжения

При настройке типа подключения напряжений на схему Звезда, в память прибора записываются всегда только фазовые напряжения, при схеме *Треугольник* только линейные напряжения.

2.3.1.3.4 Измерение тока

При измерении токов полностью действуют положения предыдущей главы.

2.3.1.3.5 Вычисление коэффициента мощности

Прибор вычисляет как действительный коэффициент мощности PF (λ – лямда, в дальнейшем для упрощения обозначим его PF =Power Factor), так и для отдельных фаз и коэффициент мощности первой гармоники соs φ (необходимый например для контроля компенсирующих устройств).

Действительный фазовый коэффициент мощности PF вычисляется из соотношения активной и полной мощности (способ измерения описан ниже) по формуле

$$PF = \frac{|P|}{S} \qquad [-] \qquad [2]$$

PF... действительный коэффициент мощности

- Р... активная мощность
- S... полная мощность,

И в зависимости от фазового сдвига основных гармоник тока и напряжения, характеризует индуктивный или емкостной характер реактивной мощности.

Затем прибор вычисляет трехфазный действительный коэффициент мощности 3PF по формуле

$$3PF = \frac{|3P|}{3S} \qquad [-] \qquad [3]$$

3PF... действительный трехфазный коэффициент мощности

3Р... трехфазная активная мощность

3S... трехфазная полная мощность

Рис. 4 : Идентификация потребления - отдачи и характера реактивной мощности на основе фазового сдвига

Примечания:

При настройке на схему Аарона вычисляется только трехфазный коэффициент мощности 3PF, фазовые коэффициенты мощности PF не вычисляются.

Для дальнейшей обработки данных в программе CETIS32, величины PF, 3PF дополнены признаком L или C, в зависимости от вычисленного коэффициента мощности первой гармоники соз φ . На индикаторах прибора эта дополнительная информация у величин PF не показывается.

Кроме действительного коэффициента мощности, для отдельных фаз с помощью преобразования Фурье вычисляется (за исключением схемы Аарона) еще и коэффициент мощности первой гармоники соs ф. Значение соs ф содержит признак L или C, в зависимости от характера измеренной реактивной мощности (индуктивный или емкостной характер по рис.4).

При настройке записи на среднее значение коэффициента мощности, прибор вычисляет среднюю величину из обеих групп значений измеренных коэффициентов, то есть, отдельно для индуктивных и емкостных. В памяти, однако, будет сохранено среднее значение той группы, которая преобладала в течение этого интервала записи (длилась большее время).

2.3.1.3.6 Вычисление фазных мощностей

Прибор измеряет и вычисляет действительную активную мощность по формуле

$$P = \frac{1}{n} \sum_{i=1}^{n} U_i \times I_i \qquad [W] \qquad [4]$$

Р... активная мощность

U_i... измеренный квант напряжения

I_i... измеренный квант тока

Для вычислений берутся 64 измеренных кванта напряжения и тока за период. При положительном результате это состояние принимается за **потребление** (импорт) активной мощности. Если

полученный при вычислении по формуле результат отрицательный, это означает, что энергия перетекает в обратном направлении по сравнению со схемой включения прибора(ориентация токовых выводов k,l), и это состояние принимается за **отдачу** (экспорт).

Полная мощность вычисляется по формуле

$$S = U_{eff} \times I_{eff}$$
 [VA] [5]

S... полная мощность

U_{eff}... эффективное значение напряжения

I_{eff}... эффективное значение тока

Реактивная мощность вычисляется из активной и полной мощности по формуле

$$Q = \sqrt{S^2 - P^2} \qquad [var] \qquad [6]$$

- Q... реактивная мощность
- S... полная мощность
- Р... активная мощность

Так же, как и коэффициент мощности, значение реактивной мощности дополнено признаком L или C, в зависимости от фазового сдвига основных гармоник тока и напряжения, чем характеризуется индуктивный или емкостной характер реактивной мощности.

2.3.1.3.7 Вычисление трехфазных мощностей

Трехфазные активные мощности прибор определяет путем вычисления из фазных мощностей путем простого сложения по формуле

$$3P = P_1 + P_2 + P_3$$
 [W] [7]

3Р... трехфазная активная мощность

Р1, Р2, Р3...отдельные фазные активные мощности

В указанную формулу отдельные фазные активные мощности входят каждая со своим знаком (поребление положительно, отдача отрицательна). Поэтому для вычисления трехфазных мощностей необходима правильная ориентация подключенных токовых датчиков – ИТТ.

Подобным способом вычисляются и трехфазные реактивные мощности 3Q :

$$3Q = Q_1 + Q_2 + Q_3$$
 [var] [8]

3Q... трехфазная реактивная мощность

Q1, Q2, Q3... отдельные фазные реактивные мощности

У реактивной мощности ее индуктивный/емкостной характер влияет на знак величины (+/-), и проивоположные значения вычитаются.

Примечание. При наличии в сигнале высших гармоник, отдельные фазные реактивные мощности образованы не только фазовым сдвигом основных гармоник тока и напряжения, но частично и «искажающей, деформирующей » мощностью высших гармоник. Однако фазные реактивные мощности вычисляются как одно целое (доля деформирующей мощности в целой фазной реактивной мощности прибором не определяется), и им присваивается знак в зависимости только от сдвига основных гармоник тока и напряжения. При несиммеричной нагрузке (когда в отдельных фазах реактивные мощности имеют разный характер L/C), или при измерении по схеме Аарона, может возникнуть ситуация, когда при сложении фазных реактивных мощностей различного характера L/C, взаимно вычтутся и части реактивных мощностей, соответствующие деформирующей мощности. В таком случае полученное значение трехфазной реактивной мощности будет меньшим, чем в дейтвительности, и возникнет дополнительная ошибка измерения.

Трехфазная полная мощность 3S вычисляется по формуле

$$3S = \sqrt{3P^2 + 3Q^2}$$
 [VA] [9]

- 3S... трехфазная полная мощность
- 3Р... трехфазная активная мощность
- 3Q... трехфазная реактивная мощность

Полные мощности (одно – и трехфазные) знака не имеют.

При настроенном измерении средних мощностей прибор проводит на соответсвующих входах измерение и вычисление мгновенных мощностей вышеописанным способом. В пределах интервала записи из этих мгновенных значений вычисляется средняя мощность, и на конце интервала записи это среднее значение сохраняется в памяти.

2.3.1.3.8 Вычисление полного гармонического искажения (THD) и высших гармоник

Из измеренных кривых напряжений и токов прибор с помощью преобразования Фурье вычисляет относительные значения отдельных высших гармоник до 25 порядка (h_{Ui}, h_{ii}, вычисленные из абсолютных значений амплитуд гармоник H_{Ui}, H_{ii} как отношение H_{Ui}/H_{U1}, H_{ii}/H_{I1}). Из полученных значений вычисляется величина полного гармонического искажения по формуле

$$THD_{U} = \sqrt{\sum_{i=2}^{25} h_{Ui}^{2}} [\%] [10]$$
$$THD_{I} = \sqrt{\sum_{i=2}^{25} h_{Ii}^{2}} [\%] [11]$$

THD_U... полное гармоническое искажение напряжения

h_{Ui}......i-тая относительная гармоническая составляющая напряжения (отнесенная к величине основной гармоники H_{U1}, i = номер гармоники)

ТНD₁... полное гармоническое искажение тока

h_{li}.....i- тая относительная гармоническая составляющая тока

Поскольку расчет высших гармонических достаточно сложный, он проводится в каждом измерительном цикле только для одной из кривых U1, I1, U2, I2, U3, I3, в указанной очередности. Поэтому величины отдельных гармоник и THD обновляются в шесть раз медленнее, чем остальные измеряемые величины, примерно с периодом 20 секунд. Изменения этих величин с меньшими периодами прибор измерить не может.

2.3.1.3.9 Вычисление максимальных четвертьчасовых средних активных мощностей

Приборы в исполнении "Е" позволяют измерять максимальное значение средней четвертьчасовой трехфазной активной мощности за контролируемй период (1/4 hPm).

Прибор постоянно вычисляет средние активные мощности и с помощью внутренних часов проводит в конце каждых 15 минут усреднение на этом интервале и сравнение. Если средняя активная мощность за прошедшие 15 минут окажется больше, чем запомненное ранее в памяти максимальное значение, он заменяется на эту вновь измеренную величину. При этом запоминается дата и время, когда эта величина была зарегистрирована.

Величины индицируются в окне ¼ hPm (см. Рис. 2). В окне L1 – измеренная величина четвертьчасового максимума в Квт, в окне L2 и L3 – время регистрации: в окне L2 день и месяц в формате ДД.ММ, в окне L3 часы и минуты в формате ЧЧ.ММ. Год не показан.

Величину измеренного четвертьчасового максимума можно в начале контролируемого периода обнулить настройкой параметра **Erst** в группе параметров номер 12. Время обнуления запоминается и можно его просмотреть в окне **Rst**.

Внимание !!! Обнулением этой величины одновременно обнулится и состояние электросчетчика !!!

2.3.1.3.10 Измерение электрической работы (электросчетчик)

Приборы в исполнении "Е" имеют встроенный четырех-квадрантный трехфазный электросчетчик, поэтому их можно использовать в качестве вспомогательного счетчика.

Измеренные значения электрической работы записываются в отдельные счетчики в зависимости от характера, то есть отдельно активная энергия потребленная (**A+**, импорт), активная энергия отданная в сеть (**A-**, экспорт), реактивная энергия индуктивная (**ArL**), реактивная энергия емкостная (**ArC**).

В каждом из окон **A+**, **A-**, **ArL**, **ArC** можно наблюдать измеренное значение соответствующей энергии в kWh (kvar h). Данные имеют формат NNN NNN NNN.N, то есть 9 знаков до, и один знак после десятичной точки. Число показано последовательно в окнах L1 - L3, причем в окне L1 три самые старшие разряда, в окне L2 следующие три, и в окне L3 младшие три разряда перед точкой и один разряд после десятичной точки.

В данном примере состояние электросчетчика равно 2953151,6 kWh (кВтчас).

Состояние электросчетчика можно в начале контролируемого периода обнулить настройкой параметра **Erst** в группе параметров номер 12. Время обнуления запоминается и можно его просмотреть в окне **Rst**.

Внимание !!! Обнулением этой величины одновременно обнулится и сохраненое максимальное значение средней четвертьчасовой трехфазной активной мощности (1/4 hPm) !!!

Примечание: При управлении счетчиком через компьютер можно задать до трех тарифных поясов, и наблюдать потребление электроэнергии отдельно по каждому тарифу. Однако на индикаторах прибора можно наблюдать только суммарное потребление электроэнергии за весь контролируемыйо период, независимо от настройки отдельных тарифов.

2.3.1.3.11 Вычисление дневных профилей

В некоторых случаях, например при контроле загруженности измеряемого узла сети, нет необходимости обрабатывать целиком всю запись величин за контролируемый период, а вполне можно обойтись сохраненными так называемыми *Дневными профилями*.

Дневной профиль – это запись напряжений, токов и коэффициента (PF) в определенный день с интервалом записи 1 минута. Сохраняются средние значения указанных величин за каждую минуту. Настройка интервала записи дневного профиля, количества величин и способа их сохранения является постоянной, и изменить ее нельзя.

Прибор позволяет проводить запись двух дневных профилей:

- Выбранный дневной профиль (S = selected, далее выбранный профиль)
- Дневной профиль максимума тока (M = maximum, далее максимальный профиль)

Оба профиля имеют одинаковую структуру, отличаются только в настройке выбора дня, в котором должна произойти запись профиля.

День записи выбранного профиля произвольно задается пользователем. После настройки желаемого дня записи и его отсылки в прибор командой Вышли дату записи, из памяти прибора будет удален возможно имеющийся там предыдщий профиль, и по прошествии настроенной даты записи можно переписать из прибора сохраненный там выбранный профиль для дальнейшей обработки на компьютере.

Запись *максимального профиля* будет проведена по прошествии дня, в котором наступил максимум суммы средних одноминутных фазовых токов I1+I2+I3, определяемой как среднее значение в скользящем 15 минутном окне. Максимум определяется следующим образом:

Пользователь с помощью команды *Обнуление* в группе *Максимальный профиль* определит начало контролируемого периода. Прибор каждую минуту определяяет среднее значение напряжений, токов и коэффициента PF и сохраняет эти значения в своей промежуточной памяти. Одновременно определяется скользящее среднее значение суммы средних одноминутных фазовых токов I1+I2+I3 за прошедшие 15 минут. Если это новое скользящее среднее значение больше, чем любое из предыдущих значений от начала контролируемого периода, в промежуточную память заносится это новое значение вместе с временем его обнаружения, и при наступлении нового дня этот профиль будет сохранен в основной памяти прибора как новый максимальный профиль. Потом этот профиль можно перенести в компьютер для дальнейшего анализа.

Для информации, кроме скользящего среднего 15-и минутного значения суммы средних одноминутных фазовых токов I1+I2+I3, одновременно вычисляются и скользящие средние 15-и минутные значения величин отдельных токов I1, I2, I3 и запоминается значение максимума и время его возникновения. Эти данные можно увидеть в окне диалога настройки дневных профилей после их прочтения с помощью команды *Прими актуальные данные*.

2.3.1.4 Настройка записи и обработки измеренных данных в программе CETIS32 на компьютере

2.3.1.4.1 Вычисление мощностей в программе CETIS32

Прибор SMZ33 можно настроить на измерение и запись средних мощностей. Если прибор не был настроен на запись средних мощностей, программа CETIS32 позволяет провести дополнительный расчет активных, реактивных и полных мощностей на основе измеренных значений напряжений, токов и коэффициентов мощности PF.

Расчет проводится по формуле:

$P = U \times I \times PF$	[W]	[12]
$Q = U \times I \times \sqrt{1 - PF^2}$	[var]	[13]
$S = U \times I$	[VA]	[14]

Р... активная мощность

Q... реактивная мощность

S... полная мощность

U... эффективное значение напряжения

I... эффективное значение тока

PF... коэффициентов мощности PF (или cos φ)

При вычислении мощностей на основе измеренных значений U, I, PF (возможно cos ϕ), необходимо принять во внимание следующие обстоятельства.

2.3.1.4.2 Вычисление мгновенных мощностей

В практике часто бывает необходимо определить максимальную мощность в фазе в течение контролируемого периода. Однако прибор максимальную мощность прямо не измеряет – проводятся самостоятельные измерения U, I и коэффициентов мощности PF.

Рис. 5: Квантование по настройкам

Проблема при определении точного максимума мощности заключается в том, что при настройке записи, например, на макисмум тока и максимум коэффициента мощности PF, не гарантируется, что оба измеренные значения были измерены в одно и то же время. А величина мощности, рассчитанная на основе величин, которые не были измерены вместе одновременно, теряет смысл. Пример такой ситуации показан на рис. 5.

При настройке записи максимального напряжения, максимального тока, максимального коэффициента мощности PF и интервале записи 15 минут, на конце интервала, то есть в 15:30 в этом случае сохранится значение напряжения, измеренное в 15:26, значение тока, измеренное в 15:20, и значение коэффициента мощности (здесь – косинуса фи), измеренное в 15:21. При вычислении активной мощности получим ошибочный результат.

Для правильного определения мощностей в подобных случаях программа позволяет выбирать способ квантования отдельных фазовых величин (напряжение, ток и коэффициент мощности).

2.3.1.4.3 Квантование по настройкам

При этом базовом способе квантования отдельные величины вычисляются самостоятельно и независимо, то есть можно настроить например запись максимального напряжения, минимального тока и среднего значения коэффициента мощности за инервал записи. Однако в этом случае дальнейший расчет мощности не имеет смысла.

2.3.1.4.4 Квантование по «срезу»

При настройке этого способа квантования определяется так называемая управляющая величина «среза». Выбранная управляющая величина «среза» может быть настроена на один из экстремумов, то есть на максимум или минимум, а квантование остальных фазовых величин

определяется в этом случае моментом обнаружения настроенного экстремума выбранной управляющей величины в этой конкретной фазе (см. рис.6).

В качестве управляющей величины «среза» можно выбрать:

- Напряжение
- Ток
- Коэффициент мощности
- активная фазная мощность
- активная трехфазная мощность
- Если управляющей величиной является напряжение, ток или Коэффициент мощности, то можно выбрать запись по максимуму или минимуму управляющей величины. Если управляющей величиной является мощность, то запись величин всегда проводится в момент обнаружения максимума этой мощности.

Рис. 6:Квантование по максимуму U

На Рис. 6 показан пример трехфаного измерения (кривые коэффициента мощности не показаны). При настройке квантования «по экстремуму напряжения» и выборе максимума этой величины, в конце интервала записи (в 15:30) будут сохранены следующие значения:

- максимальное значение напряжения U1max в течение всего интервала записи, измеренное в 15:22 и значения I1 и cos1 в тот же момент времени
- максимальное значение напряжения U2max в течение всего интервала записи, измеренное в 15:27 и значения I2 и соs2 в тот же момент времени
- максимальное значение напряжения U3max в течение всего интервала записи, измеренное в 15:18 и значения I3 а соs3 в тот же момент времени

При таком способе квантования гарантируется, что все величины в одной фазе записываются в один и тот же момент времени. Поэтому из них можно вычислить однофазную мощность. Момент записи может быть разным в разных фазах, следовательно, трехфазную мощность здесь вычислить нельзя.

Если управляющей величиной является трехфазная мощность, то все фазовые величины во всех фазах сохраняются в один и тот же момент времени, и из них можно вычислять трехфазную мощность.

Нефазовые величины, такие как частота и температура, настройкой «срезового» квантования никак не ограничены, и сохраняются независимо в согласии с настроенным способом. Так же и запись средней мощности никак не зависит от настроек «срезового» квантования.

2.3.1.5 Вычисление средних мощностей на основе записанных средних значений U, I, PF

При настройке записи средних значений U, I и коэффициента мощности, прибор сохраняет средние значения отдельных величин, которые определяются формулами

$$U_{s} = \frac{1}{n} \sum_{i=1}^{n} Ui \qquad [V] \qquad [15]$$
$$I_{s} = \frac{1}{n} \sum_{i=1}^{n} Ii \qquad [A] \qquad [16]$$
$$PF_{s} = \frac{1}{n} \sum_{i=1}^{n} PFi \qquad [-] \qquad [17]$$

Us... среднее на интервале записи эффективное значение напряжения

Ui... мгновенные эффективные значения напряжения

Is... среднее на интервале записи эффективное значение тока

li... мгновенные эффективные значения тока

PFs... среднее на интервале записи значение коэффициента мощности

PFi... мгновенные значения коэффициента мощности

п...количество измерений, проведенное в течение интервала записи

При последующем расчете активной мощности в программе CETIS32, из сохраненных таким образом средних величин будет вычислена мощность по формуле

$$P_{s} = U_{s} \times I_{s} \times PF_{s} = \left(\frac{1}{n} \sum_{i=1}^{n} U_{i}\right) \times \left(\frac{1}{n} \sum_{i=1}^{n} I_{i}\right) \times \left(\frac{1}{n} \sum_{i=1}^{n} PF_{i}\right) \qquad [W] \qquad [14]$$

Традиционно средняя мощность определена формулой

$$P_{s} = \frac{1}{n} \sum_{i=1}^{n} P_{i} = \frac{1}{n} \sum_{i=1}^{n} (U_{i} \times I_{i} \times PF_{i})$$
 [W] [15]

Из приведенных формул видно, что уравнения [14] и [15] в общем случае не дают одинаковый результат, разница возрастает с ростом колебаний отдельных измеренных значений U_i, I_i, PF_i. Одинаковые результаты получим только в случае, если значения U_i, I_i, PF_i в течение интервала записи не изменяются.

Расчет средней активной мощности из средних значений напряжений, токов и коэффициентов мощности PF можно поэтому применять только для определения ориентировочной величины мощности, и только в случае, когда отдельные значения Ui, Ii, PFi в течение интервала записи слишком сильно не изменяются. Для точного определения средней мощности необходимо настроить прибор на измерение и запись средних мощностей, где описанная ошибка не проявляется.

2.3.2 Измерение температуры

Измерение температуры проводится с такой же кратностью, как и измерение электричеких величин. Варианты настройки записи в память прибора так же подобны.

2.3.2.1 Подключение

SMZ 33

К приборам в исполнении "Т" можно подключить термометр с токовым выходом 4-20 mA. Источник питающего напряжения для термометра, величиной около 24 V пост., встроен в прибор и термометр запитан прямо измерительным током. Термометр (его токовый преобразователь) подключается к выводам 25 (+) и 26 (-), при этом необходимо строго соблюдать полярность. Пример подключения приведен в приложении.

Входные цепи измерения температуры внутри прибора гальванически соединены со входом временной синхронизации и цепями линий коммуникации. От остальных цепей прибора они гальванически отделены.

Длина кабеля для подключения термометра не ограничена. Лимитирующим фактором является сопротивление контакта присоединения этого кабеля, которое не должно быть больше чем 30 Ом. Термометр можно заказать как дополнительное оборудование прибора.

2.3.2.2 Настройка прибора

Диапазон измерения подключенного термометра необходимо задать в группе параметров номер 3.

В окне L1 надо задать температуру (в градусах Цельсия) при токе датчика 4 mA (**T04**), а в окне L2 - температуру при токе датчика 20 mA (**T20**). Измеренное значение температуры **T** можно наблюдать в общей группе индикации **3PF-f-T** в окне L3.

Наряду с ручной настройкой, диапазон измерения датчика температуры можно настроить и с помощью компьютера в программе CETIS32. Порядок настройке приведен в разделе «Управление с помощью компьютера».

2.3.3 Выходные реле

Приборы в исполнении "R" оборудованы двумя реле с переключающим контактом, функционирование которых можно настроить по желанию пользователя (см. далее в описании параметров).

2.3.3.1 Подключение

Контакты реле выведены на разъем согласно табл.3. Нагружать их можно током до 4А при переменном напряжении 250В.

Реле	номер 1	Реле	номер 2	
Вывод но.	Контакт	Вывод но.	Контакт	
13	замыкающий	16	замыкающий	
14	средний	17	средний	
15	размыкающий	18	размыкающий	

Таб. 3 :Выходные реле

2.3.3.2 Функционирование

Выходные реле можно использовать в качестве простейшего двухпозиционного регулятора, или для индикации определенного состояния. Работу реле объясняет Рис. 7 с помощью графичекой аналогии.

Величину, которой будет управляться поведение реле (**Rxcv**, <u>c</u>ontrol <u>v</u>ariable), можно выбрать из таблицы 4. Далее, необходимо задать, как будет состояние реле управляться выбранной величиной. Для этого предназначены параметры *полярность отклонения для активного состояние реле* (**Rxdp**, <u>d</u>eviation <u>p</u>olarity), и *активное состояние реле* (**Rxas**).

Полярность отклонения можно настроить на одно из значений - **UNDE** (under = nog) или **DVER** (over = над), и активное состояние реле на значение **DN** (on = включено) nebo **DFF**(off = выключено). Если хотим с помощью реле сигнализировать например, превышение поребляемой нагрузкой мощности, зададим как управляющую величину реле номер 1 - **R1cv**, **величину трехфазной активной мощности P13**, полярность отклонения **R1dp** на **DVER** (чтобы активное состояние реле наступило, когда управляющая величина будет над заданной границей), а активное состояние реле **R1as** - на **DN**. В этом случае, если управляющая величина будет над заданной границей, реле номер 1 будет активировано и перейдет в состояние включено.

Граничное значение (**RxI%**) задается обычно в процентах от номинального значения измеряемой величины. Номинальные значения, соответствующие 100%, приведены в таблице 4. Такую же размерность имеет и гистерезис (**Rxh%**), которым определяется нечувствительность реле. Если значение управляющей величины находится в пределах [(**RxI%-Rxh%**), (**RxI%+Rxh%**)], состояние реле не меняется. Кроме этого, можно еще настроить нечувствительность реле к быстрым изменениям управляющей величины, с помощью *времени блокировки* **Rxbl**. Реле в этом случае изменит свое состояние, только когда значение управляющей величины остается над или под настроенной границей (включая гистерезис) хотя бы чуть дольше *времени блокировки*.

Реле можно настроить и постоянно до требуемого состояния настройкой управляющей величины **Rxcv** на значение **0** (постоянно отключено) или **1** (постоянно включено). Кроме этих случаев, реле останется постоянно выключенным независимо от значения управляющей величины и тогда, когда граница **RxI%** не была задана (состояние ----). Исключение при настройке граничного значения составляет частота: граница **RxI%** и гистерезис **Rxh%** задаются прямо в единицах герц.

Управляющая	Обозначение	Обозначение на	Номиальное значение для	Примеч
величина		дисплее	задания границы Rxm% и	
			гистерезиса Кхһ%	
Напряжение	01/02/03	01/02/03	Прямое измерение :	Unom
фазное				См.пар.
заданное			- трехф./Aron. Unom <i>x</i> √3 [V]	HOM. UT
Напряжение	U123	U 1 3	Измерение через МТN :	
фазное			- звезда VTp / √3 [∨]	
произвольное			- трехф/Aron VTp [V]	
Ток фазовый	1 / 2 / 3	11/12/13	(Pnom / Unom) / 3 [A]	
заданный				
Ток фазовый -	1123	113		
произвольный				
Действ.коэф PF	PF1/ PF2/ PF3	PF1/PF2/ P53	1,00	
фазовый залан				
Действ коэф PF	3PF	PF13		
трехфазный	••••			
частота	f	F 1	Граница и гистерезис заданы	
(фаза L1)			в герцах. [Hz]	
Температура	Т	Т	0 % T04 , 100 % T20 [°C]	
Активн. мощн.	P1/P2/P3	P1/P2/P3	- однофазная величина :	
фазная-заданн.			Pnom / 3 [VA]	
Активн. мощн.	3P	P 1 3	- 3-фазная величина :	
трехфазная			Pnom [VA]	
реактивн. мощн	Q1 / Q2 / Q3	01/02/03		
фазная-заданн.				
реактивн. мощн	3Q	U I B		
трехфазная		<u> </u>		
Полная мощн.	S1/S2/S3	51/52/53		
фазная-заданн.	20	<u> </u>		
полная мощн.	35	212		
Грехфазная	cos1/ cos2/ cos3		1 00	
коэф. т.тарм. фазный-заланн			1,00	
тнош фазное -	THDU1 / THDU2		100 %	
заданное	/ THDU3	TUB		
ТНDU фазное -	THDU123	TUI3		
произвольное				
ТНDI фазное -	THDI1 / THDI2	1 SIT / TIZ /	100 %	
заданное	/ THDI3	TIB		
THDI фазное -	THDI123	TIIB		
произвольное				
Всегда отключ.	-	0	-	
Всегда включен	-	1	-	

Таб. 4 : Перечень управляющих величин реле

SMZ 33

При выборе управляющей величины наряду с отдельными напряжениями, токами, и их гармоническими искажениями, возможно выбрать и все фазовые величины одновременно путем выбора *произвольной* величины. Этот способ поясняет следующий пример.

Пример:

Реле номер1 хотим настроить на индикацию перенапряжения в трехфазной сети. Управляющую величину R1cv настроим на *произвольное фазное напряжение*, то есть на U13. Полярность отклонения R1dp настроим на DVER и активное состояние реле R1as на ON.

Активное состояние реле, то есть соединение его среднего и замыкающего контакта, наступит в случае, когда *любое* из напряжений U1, U2, U3 примет значение, соответствующее настройке активного состояния. Наоборот, в пассивное состояние реле вернется в том случае, когда *ни одно* из напряжений не будет соответствовать активному состоянию.

Если бы в указанном примере возникла необходимость в сигнализации перенапряжения, возникшего одновременно во всех фазах, было бы нужно настройки изменить так, что полярность отклонения **R1dp** настроить на **UNDE**. Активное состояние реле **R1as** следовательно надо настроить на значение **DFF**, или же оставить **R1as** в состоянии **DN** а для сигнализации использовать нормально замкнутый (т.е. размыкающий) контакт реле.

2.3.3.3 Настройка прибора

Работу обоих реле можно настраивать полностью независимо. Функционирование реле номер 1 определяется группой параметров номер 7 и 8, а реле номер 2 - группой параметров номер 9 и 10.

В приведенном примере реле нмер 1 включится, когда хотя бы одно из фазных напряжений превысит границу 110 + 3 = 113 % от номинального напряжения (тогда при **Unom** = 230 V значение 260 V), и останется в этом диапазоне хотя бы одну минуту. Отключится реле тогда, когда в течение 1 минуты все напряжения будут меньше уровня 110-3 = 107 % (то есть 246 V).

Настройку реле можно провести и с помощью компьютера – см. соответствующий раздел.

2.3.3.4 Ручное управление состоянием реле

Состояние реле, управляемое значением выбранной величины, персонал может однократно изменить. При нажатии и удержании кнопки **М** можно нажатием кнопки ▲ перключить текущее состояние реле номер 1 на противоположное. Реле номер 2 можно подобным способом переключить кнопкой ▼. Немедленно после этого внешнего воздействия контроль над реле перейдет опять к прибору, который по истечении времени блокировки вернет реле в прежнее (точнее – соответствующее текущему значению управляющей велиины) состояние.

2.3.4 Синхронизация контура реального времени

Приборы в исполнении «Е» имеют вход для временной синхронизации. Временная синхронизация служит для коррекции внутреннего контура реального времени внешним сигналом.

2.3.4.1 Подключение

Вход выведен на контакты разъема номер 19 (+) и 20 (-). Внутреннее питающее напряжение входа постоянное 12В, коммутируемый ток около 5мА. Предполагается, что к нему будет подключен пассивный (беспотенциальный) контакт или транзистор. В случае если источником сигнала будет транзистор (NPN) или оптрон, необхоимо при подключении соблюсти полярность – коллектор транзистора – оптрона подключить к выводу + (номер 11), эмиттер – к выводу - (номер 12).

Внимание!!! Входы временной синхронизации гальванически соединены с цепями интерфейсов (вывод номер 20 соединен с выводом номер 30), и с цепями входа датчика температуры. От остальных цепей прибора эти входы отделены.

2.3.4.2 Работа

Если работа временной синхронизации не активирована, или если не подключен к разъему необходимый сигнал синхронизации, то внутренний контур реального времени (RTC) управляется только своим кварцевым резонатором.

Подключением синхронизирующего сигнала можно достигнуть синхронного хода внутренних часов RTC с так называемым энергетическим временем. В результате измеренные данные можно потом сравнивать с показаниями электрсчетчиков коммерческого учета.

Обеспечение синхронного хода внутренних часов имеет влияние на:

- достоверную запись измеренных величин электрической работы в настроенных тарифных зонах
- достоверность записанных величины и времени максимальной четвертьчасовой активной мощности
- соответствие показаний оси времени запоминаемых графиков величин реальному времени

Синхронизирующий импульс должен иметь ширину не менее 100 ms. На конце синхронизирующего импульса прибор проведет (если эта функция активирована) подстройку внутренних часов на ближайшую целую минуту. Синхронизирующие импульсы могут быть минутные, пятнадцатиминутные, или часовые.

2.3.4.3 Настройка

Функцию синхронизации можно активировать настройкой параметра **sync** (в окне L1) в группе параметров номер 12 на значение **D N**. При настройке параметра на значение **D F F** синхронизация не проводится, даже при подключенном сигнале синхронизации.

Настройку можно провести и с помощью компьютера – см. соответствующий раздел.

Внимание!!! Если был настроен период записи меньший, чем одна минута, временную синхронизацию проводить нельзя по причине обеспечения временной идентичности запоминаемого графика. В этом случае персонал будет при попытке настройки параметра **sync** на активное значение информирован надписью **D N1.** (ON + воскл. знак) о невозможности активации.

2.3.5 Импульсные выходы

Приборы в исполнении «Е» имеют два импульсных выхода. Кратность следования импульсов можно настроить в зависимости от величины измеренной электрической работы (передающий электросчетчик).

2.3.5.1 Подключение

Импульсные выходы реализованы на двух (взаимно гальванически отделенных) выходных транзисторах типа NPN, выводы которых выведены на пары контактов номер 21(выход номер 1, +) - 22(-) и номер 23(выход номер 2, +) - 24(-).

Предполагается, что к этим выходам через токоограничивающие резисторы будут подключаться входные оптроны внешней регистрирующей или управляющей системы. Исходя из этого, выбраны и предельные параметры транзисторных выходов – максимальное постоянное напряжение 30V и максимальный ток 50 mA. При опасности перегрузки рекомендуется защитить выходы плакими предохранителями величиной от 0,3 до 0,5А. Пример подключения приведен в приложении.

2.3.5.2 Работа

Тип электрической работы, которой будет соответствовать кратность передаваемых импульсов, можно выбрать между **A+** (активная энергия потребляемая, импорт), **A-** (активная энергия отдаваемая, экспорт), **ArL** (реактивная энергия индуктивная), и **ArC** (реактивная энергия емкостная). Далее необходимо настроить кратность следования импульсов в единицах n/kWh (или n/kvarh). Оба выхода настраиваются независимо.

Каждые пять секунд прибор определяет количество измеренной электроэнергии. Если он определит, что приращение зарегистрированной электроэнергии выше или равно количеству энергии, приходящейся на один импульс, то будет передан один или несколько импульсов. Из описания видно, что при большей кратности импульсы не генерируются равномерно и непрерывно, однако всегда группами каждые пять секунд.

Импульсы имеют постоянную длительность, равную 100 ms, минимальный интервал между импульсами также100 ms. Отсюда максимальная частота импульсов равняется 5 Hz.

2.3.5.3 Настройка

Функционирование импльсных выходов настраивается в группе параметров номер 14 (см. далее).

Кратность импульсов **N1/k** первого выхода настраивается в окне L1, кратность импульсов **N2/k** второго выхода - в окне L2. В окне L3 необходимо задать тип электрической работы для каждого выхода:

для **А+** (активная энергия потребляемая, импорт) надо задать **Я** (**Я**= active = активная, **I**=import)

для А- (активная энергия отдаваемая, экспорт) надо задать Я Е (Я= active = активная, E= export)

для **ArL** (реактивная энергия индуктивная) надо задать **R L** (**R**= reactive = реактивная, L... индуктивная)

для **ArC** (реактивная энергия емкостная) надо задать **R C** (= reactive = реактивная, С... емкостная) Настройку можно провести и с помощью компьютера – см. далее.

3. Управление с помощью компьютера

Считывать актуальные измеренные данные и настраивать прибор можно не только с панели прибора, но и с помощью местного или удаленного компьютера, подключенного к прибору через линию коммуникации. С помощью компьютера можно осуществлять и настройку, и просмотр графиков, сохраненных в памяти прибора, чего с панели прибора сделать нельзя.

3.1 Линии коммуникации

3.1.1 Местная линия коммуникации (LOCAL)

Стандартно все приборы оборудованы последовательным интерфейсом с уровнями по V.24 (RS-232), выведенным на лицевую панель прибора. С помощью этого интерфейса можно проводить настройку параметров прибора, перенос измеренных и сохраненных данных из памяти прибора в переносной компьютер, и наблюдать актуальные значения измеряемых величин на мониторе переносного компьютера.

Взглядом к тому, что приборы моугт быть оборудованы еще и дистанционной линией коммуникации, рассматриваемая линия обозначена как местная (LOCAL). Линия выведена на разъем типа MINIDIN на панели управления, означенный как *COM*. Распределение сигналов по контактам разъема приведено в Tab. 5..

Tab. 5 : Подключение местной линии коммуникации	
(LOCAL)	

Сигнал	Контакт розетки MINIDIN
RxD, читаемые данные	4
TxD, высылаемые данные	3
/LOCAL, запрос местной коммуникации	5
GND, общий провод (земля) линии коммуникации	6

розетка (вид спереди)

При необхоимости переноса данных через местную линию, персонал должен соединить компьютер и прибор кабелем связи (поставляется по заявке). Разъем MINIDIN этого кабеля имеет закороченные меджду собой контакты 5 и 6. При вставлении разъема в розетку на контакте /LOCAL появится логический ноль и прибор перенаправит коммуникацию на этот местный интерфейс, что будет кратковременно индицироваться надписью **Loc** в цифробуквенном окне. Одновременно прибор отключится от дистанционной линии коммуникации (если он ею оборудован).

Для успешного подключения через местный интерфейс должны быть настоены параметры коммуникации в программе CETIS32 на значения COM, 9600Bd и адрес прибора на 1 (независимо от адреса прибора, настроенного при установке прибора, он имеет значение только для главной линии коммуникации).

При выключении разъема из розетки прибор снова перейдет на обмен данными через главную (дистанционную) линию коммуникации, что кратковременно подтвердится надписью **Rem** в цифробуквенном окне.

3.1.2 Дистанционная линия коммуникации (REMOTE)

Дополнительно приборы могут быть оборудованы дистанционной линией коммуникации, через которую можно управлять прибором с удаленного компьютера. С этого компьютера можно проводить настройку прибора и перенос актуальных или сохраненных данных.

Дистанционная линия коммуникации гальванически отделена от внутренних цепей прибора и тип интерфейса может быть RS-232 (обозначение прибора например SMZ33 RT/232), RS-485 (.../485) или CAN (.../CAN).

Через эту линию может быть подключено к удаленному компьютеру один или больше приборов. Отдельные приборы должны иметь настроенные разные адреса коммуникации и одинаковую скорость коммуникации. Эти парметры можно настроить через местную линию в разделе *Установка* программы CETIS32, или вручную с панели прибора в группе параметров номер 4.

3.1.2.1 Интерфейс RS-232

К данному интерфейсу может быть подключен только один прибор. Длина кабеля связи не должна в этом случае превышать несколько десятков метров. Кроме того, через этот интерфейс можно подключить прибор к модему, тогда удаленность и количество приборов не будут ограничены.

контакт	сигнал
27	Не использ.
28	RxD
29	TxD
30	GND

Таб. 6 : Подключение дистанционной линии коммуникации – интерфейс RS-232

3.1.2.2 Интерфейс RS-485

К данному интерфейсу может быть подключено до 32 приборов на удаленности до 1200 метров. Отдельные приборы должны иметь разные адреса в интервале от 1 до 253, настроенные при установке.

	Таб. 7 : Подключение дистанционной	линии коммуникации – интерфейс	RS-485
--	------------------------------------	--------------------------------	--------

контакт	сигнал
27	TR
28	DATA A
29	DATA B
30	GND

На стороне компьютера должна быть установлена карта связи с соответствующим интерфейсом, или внешний преобразователь уровней 232/485, подключенный к стандартному последовательному входу компьютера (COM). Преобразователь должен иметь функцию автоматического переключения направления переноса данных.

3.1.2.3 Интерфейс САМ

Речь идет о высокоскоросном интерфейсе, пригодном например для переноса актуальных данных от большого числа приборов – через него можно подключить до 110 приборов. Максимальная длина кабеля при этом зависит от скорости коммуникации, при скорости 100 kbit/s составляет около 500 метров. Отдельные приборы должны иметь разные адреса в интервале от 1 до 1023, настроенные при установке

контакт	сигнал
27	TR
28	CAN H
29	CAN L
30	GND

Таб. 8 : Подключение дистанционной линии коммуникации – интерфейс САЛ

На стороне компьютера должна быть установлена карта связи с интерфейсом CAN.

3.1.2.4 Кабель связи

В обычных условиях (длина кабеля до 100 метров, скорость до 9600Bd), выбор длины кабеля не является критическим. Можно использовать практически любой экранированный кабель(например MK 4x0,15) с двумя парами проводников, а экран соединить в одной точке с защитным проводником PE.

При длине кабеля свыше 110 метров, или при высшей скорости обмена данными (более 20kbit/s), необходимо применить специальный экранированный кабель связи с кручеными парами ("twistedpair"), который имеет определенное волновое комплексное сопротивление (обычно около 100 Ом).

3.1.2.5 Концевые резисторы

Интерфейсы RS-485 и CAN требуют, особенно при больших скоростях и расстояниях, импедансного окончания конечных узлов с помощью установки концевых резисторов. Концевые резисторы устанавливаются только в конечных точках линии (например один у компьютера а второй у самого дальнего прибора). Резисторы подключаются между контактами разъема 28 (**A**, или **CANH**) и 29 (**B**, или **CANL**).

Приборы SMZ33 с дистанционной линией коммуникации этих типов стандартно оборудованы встроенным концевым резистором (величиной 330R/120R для RS-485/CAN), который внутри прибора постоянно присоединен к контакту разъема 29 (**B**, или **CANL**), а его второй вывод к контакту 27 (**TR**).

Подключение резистора осуществляется закорачиванием между собой контаков разъема номер 27 (TR) и 28 (A, или CANH).

3.1.2.6 Протоколы коммуникации дистанционной линии

3.1.2.6.1 Протокол коммуникации КМВ

Данный протокол применяется при коммуникации через интерфейсы RS-232 или RS-485, когда прибор подключен к компьютеру через стандартный последовательный порт (COM). Этот протокол стандартно предустановлен и в группе параметров номер 4 это индицируется как *РО*. Передача данных происходит на настроенной скорости в диапазоне 600 - 19200 Bd (8-bit без четности, 1 stopbit). Если подключено несколько приборов, каждый должен иметь свой индивидуальный адрес.

3.1.2.6.2 Протокол коммуникации Modbus RTU

Для возможности подключения прибора к различным пользовательским программам, он имеет в распоряжении еще протокол Modbus-RTU. Это протокол можно задать как протокол *PIN / PIE / PID* (без четности / четный / нечетный). Подробное описание протокола превышает возможности данного руководства и может быть предоставлено производителем по запросу.

3.1.2.6.3 Коммуникация через модем

Прибор с интерфейсом RS-232 может быть подключен к компьютеру и с помощью телефонного модема.

При установке необходимо кроме адреса настоить и скорость коммуникации в зависимости от максимальной скорости модема. Далее необходимо настроить, что коммуникация будет осуществляться через модем, и задать строку инициализации данного модема. С помощьюэтой строки прибор настраивает модем таким образом, чтобы в случае дозвона от удаленного компьютера установилась связь, и могли успешно передаваться данные от прибора.

Модем должен быть совместимым с оснвным комплектом так называемых АТ –приказов (Hayes). Практически все современные модемы отвечают этому условию и потому проблем с коммуникацией быть не должно. Исходя из практического опыта, рекомендуем применение модемов фирмы Microcom. Для этих модемов строка инициализация имеет вид:

ATB0&D0E0&K0&L0Q0V0X1 S0=1 S10=100

В случае, если эта строка не подойдет к применяемому модему, надо проконтролировать применение всех АТ- приказов в строке инициализации согласно документации модема, и в случае необходимости строку изменить. В случае повторяющихся сбоев обращайтесь на фирму KMB systems.

3.1.2.6.4 Протокол коммуникации CAN

Использован фирменный протокол коммуникации, описание которого превышает возможности данного руководства. Для получения более подробной информации обращайтесь на фирму KMB systems.

3.2 Описание программного обеспечения CETIS32 для приборов "SMZ 33"

Программное обеспечение CETIS32 для Windows позволяет настраивать все важнейшие параметры прибора SMZ 33 и сохранять на диске эти настройки, записывать, просматривать и архивировать результаты измерений проведенных прибором.

Нижеследующие главы раскрывают последовательность шагов при осуществлении этих задач. Общие принципы работы с программой изложены в руководстве "CETIS32- общая часть".

3.2.1 Настройка стандартных диапазонов индикации

Программа позволяет установить так называемые стандартные диапазоны индикации для одельных классов приборов. Наряду со стандартными диапазонами здесь можно настроить и структуру тарифа потребления для электросчетчика.

Прибор SMZ 33 относится к группе приборов SMx, поэтому окно настроек стандартных диапазонов откроется следующими командами *Настройки – Стандартные диапазоны - SMx*. Откроется окно как на Рис. 8.

Рис. 8 : Стандартные диапазоны индикации

В группе Напряжения, Токи Частота и Температура можно настроить базовые значения диапазонов измерительных шкал. При переносе записанных графиков из прибора в компьютер программа CETIS32 установит диапазоны шкал измерения согласно этим значениям и созданный таким образом граф отобразит на мониторе и сохранит на диске. При повторном просмотре этого графа сохраненные настройки диапазонов останутся без изменений, даже если дошло и к изменению стандартных диапазонов.

В том же окне можно настроить границы полос измеряемых величин. Полосы служат для статистической обработки данных в отчете об измерениях (см. раздел *Отичет об измерениях*). *Полосу напряжения 1* можно, кроме того, показать на графе соответствующей командой, использовав ее, таким образом, для визуального контроля измеренных графиков напряжения на предмет соблюдения предельных допустимых значений.

После окончания настройки и нажатии кнопки ОК, заданные значения сохранятся на диске и будут действительны до тех пор, пока не будет проведена подобным способом новая настройка диапазонов.

3.2.2 Подключение прибора к РС через местную линию (LOCAL)

Перед первым подключением прибора после установки программы CETIS32 необходимо задать так называемые общие настройки параметров коммуникации, вызвав их командами *Настройки – Коммуникация*.

Необходимо задать номер используемого порта (обычно COM1), адрес прибора установить на 1 и скорость передачи на 9600 Вd. Правильная настройка этих параметров очень важна для добавления прибора в дата-базу программы CETIS32 (команды *Команда – Новый Прибор - Автоматически*), вновь добавляемому прибору всегда назначаются такие параметры коммуникации.

Затем с помощью штатного кабеля подключим прибор к компьютеру через местную линию связи (разъем СОМ на лицевой панели).

ŀ	łастройки коммуникации - общие 🛛 🔀
	Сот Модем САН РСкарта/файл Palm
	Порт: СОМ1
	Адрес: 1
	Скорость передачи: 9600 Вd
	Число попыток: 4
	ОК ОТМена Применить

Рис. 9 : Общие настройки параметров коммуникации

3.2.3 Добавление нового прибора в базу данных

Выберем объект, в котором хотим добавить новый прибор (описание создания нового объекта приведено в руководстве "CETIS32- общая часть"), и проведем выбор Команда – Новый Прибор - Автоматически.

	Новый прибор 🔸	Автоматически 🔟 🖽 🕮 4 🕨 🦉
🟉 Cet	Открой	Peggy
-69	Прочти данные	Pegas
<u></u>	Прочти профили	SM
	Установи прибор	Simon
	Установить срединение	Sydam
	Дать <u>з</u> аголовок	🖸 mereni bytu
	Свойства приема данных	Приооры
		С Прибор SMZ 33R/485 номер 00209 -> Com1)
	Копировать Ctrl+C	— ☐ 16.08.05/1 (Прибор SM2 33H/485 номер 00209 → Com1)
	<u>В</u> ырезать Ctrl+X	- □ 🗊 30/08/2005 (Прибор SMZ 33R номер 00000 -> Com1)
	Еставить Ctrl+V	⊕-□10 Записи
_	Vanguar	
	_	

Токи, мощно Общие данны	сти Нал	ТНD, пряжен.,	гармоники част., темп-ра		Вышли Прими
SMZ 33R/485 Название записи	Регистр.ном объекта	мер <u>5</u> 7		Прик	1и данные н. профили
Интервал залиси: Начало залиси: Дата 28.7.2 Время 15.49: Максим. время з Квантовать По Примечания з	5 sec +	Немедл Циклич ибора:	мин/сек тенно . запись сов.		луникация Печать хранить Отмена

Рис. 10 : Добавление нового прибора, Окно настроек прибора

SMZ 33

Программа через местную линию связи (настроенную на общие параметры коммуникации) опознает тип подключенного прибора и покажет его актуальные настройки в окне *Настройка прибора* (см. рис.10). В этом окне нажмем кнопку *Сохраниты*. Тем самым прибор будет сохранен в дата-базе программы CETIS32 – он появится в подзаголовке *Приборы* выбранного объекта.

3.2.4 Настройка параметров прибора

С помощью параметров прибора определяются характеристики и функционирование входных и выходных сигналов, подключенных к прибору.

Совокупность параметров прибора, называемая Установка прибора, включает в себя так называемые базовые (основные) параметры и дополнительные.

3.2.4.1 Основные параметры прибора

Основными параметрами прибора являются:

- 1. способ подключения напряжения (прямо или через ИТН)
- 2. тип подключения напряжений и токов (звезда, треугольник или Аарон)
- 3. номинальное напряжение (в случае измерения через ИТН это непосредственно величина напряжения на первичной стороне ИТН, устанавливается прибором автоматически)
- 4. коэффициент передачи ИТН (задаются номинальные напряжения первичной/ вторичной обмоток ИТН)

5. коэффициент передачи ИТТ (задаются номинальные токи первичной/ вторичной обмоток ИТТ)

- 6. номинальная мощность трансформатора (в случае, если эта величина имеет смысл)
- 7. диапазон температурного датчика (если подключен)
- 8. параметры дистанционной коммуникации (скорость, адрес, возможно и тип протокола)

Указанные параметры обычно настраиваются один раз и навсегда при подключении прибора к измеряемому узлу сети, или же изменяются очень редко, например, при реконструкции самой измеряемой сети, или при изменении параметров главной линии коммуникации и т.д.

Настройку параметров можно проводить только через местную линию связи (LOC). При автоматическом добавлении прибора (по предыдущей главе), в базу данных программы CETIS32 будут перенесены как так называемые Настройки записи, так и актуальное состояние настроек базовых и дополнительных параметров прибора, называемое *Установкой прибора*. Состояние Установки можно показать после выбора прибора (его строка выделится синим цветом) командами *Команда – Установи прибор*.

Рис. 11 : Установка прибора

Установка приі	iopa	×
Измерение напряжения	Прямо	Вышли
Тип подключения:	Звезда	Прими
Номинальное напряжение:	0 V	
Коэфф.ИТН	нет / 100	Выходы
Көэфф.ИТТ	5 / 5	DEIXOAD
Коэфф.ИТТ4	/ 1	
Номинальная мощность	400 KVA	
Темпер-ра при 4	mA: 0.0 C	
Темпер-ра при 2) mA: 0.0 C	
Дистанцион: интерфейс	ный RS 485	
🗖 Протокол М	odbus RTU Четность:	Нет
Скорость коммуникац	ии 9600 Bd -	Сохранить
Адрес: 1	🗆 Modem	Отмена
Инициализация модема	ATB0&D0E0&K0&L0Q0V0X1	S0=1 S10=100

В окне *Установка прибора* появятся настройки основных параметров прибора. При необходимости их изменения, надо их настроить на требуемые значения и с помощью кнопки *Вышли* отправить в подключенный прибор. При этом в прибор будет выслана комплектная *Установка прибора*, то есть основные и дополнительные параметры прибора. Перед этим рекомендуется новые значения базовых параметров сохранить на диске кнопкой *Сохранить*.

ВНИМАНИЕ!!! При отправке базовых параметров в прибор, будут стерты все данные, записанные в памяти прибора, и состояние внутреннего электросчетчика будет обнулено.

Нажатием кнопки *Прими* можно прочитать из прибора актуальные настройки основных параметров (например с целью контроля после их отсылки в прибор, или для уточнения актуального состояния при ручном изменении параметров с клавиатуры прибора)

При высылке или прочтении базовых параметров прибора, вместе с ними передаются и так называемые дополнительные параметры, описанные в следующей главе.

3.2.4.2 Дополнительные параметры прибора

У приборов, оборудованных соответствующими выходами, можно настроить работу этих выходов с помощью так называемых дополнительных параметров.

Дополнительные параметры индицируются выбором кнопки *Выходы* в диалоге *Установка прибора* и определяют:

- 1. функционирование выходных реле
- 2. функционирование импульсных выходов
- 3. работу временной синхронизации
- 4. работу аналоговых выходов

При нажатии этой кнопки появится диалог настройки этих параметров (рис.12).

В группе *Выходные реле* можно настроить работу обоих релейных выходов выбором управляющей величины, границы переключения, гистерезиса и времени блокировки. Подобным образом в группе *Импульсные выходы* можно активировать работу импульсных выходов выбором типа электрической работы и установкой кратности выходных импульсов, а также можно включить в работу временную синхронизацию.

настройка выходных реле, импульсных выходов и синхро	низации вр	емени 🔀
_Импульсные выходы		
Выход Р1: 🔽 Передавать Эл.работа: 🛛 Активная, импорт	0.1	imp/kWh
Выход Р2: 🔽 Передавать Эл.работа: Реактив., индукт.	0.1	imp/kWh
Выходные реле		
Реле номер 1 🔽 Активировано Граница переключения	56.00	% номин.
Управл. величина. U 2 Гистерезис (+/-):	2.00	% номин.
Под границей включить Время блокировки	10	сек
🔽 Синхронизация времени		
Прими Вышли	Сохранит	ь Отмена

Рис. 12 : Настройка дополнительных параметров

После настройки необходимой конфигурации можно нажатием кнопки *Вышли* отослать новые значения дополнительных параметров в прибор. Дополнительные параметры можно, таким образом, отсылать в прибор или читать из прибора самостоятельно, независимо от базовых

параметров. Это можно использовать, например, когда необходимо при изменении дополнительных параметров сохранить измеренные данные в памяти прибора, или же и состояние электросчетчика. Если проведем настройку прибора из окна диалога *Установка прибора*, то вместе с дополнительными параметрами в прибор будут отосланы и базовые параметры, что приведет к стиранию базы измеренных данных и обнулению электросчетчика.

Нажатием на кнопку Сохранить, новые настройки сохранятся на диске, и произойдет возврат в диалог *Установка прибора*, при нажатии кнопки *Отмена* проведенные изменения в настройках будут отменены и обновится предыдущее состояние настроек. После возвращения в окно диалога *Установка прибора*, можно настройки дополнительных параметров (вместе с базовыми параметрами) сохранить на диске кнопкой *Сохранить*.

3.2.5 Настройка записи

После проведения установки прибора необходимо настроить режим записи измеряемых величин. Настройкой записи определяются сохраняемые величины, и способ их сохранения.

Настройку записи можно проводить как через местную, так и через дистанционную линию связи.

Из окна объекта настройки прибора можно вызвать, кликнув два раза в строке с названием прибора в главе *Приборы*. Появится окно *Настройка прибора*.

Токи, мощност	и 🍸 ТНД, гармоники	Пастроики
Общие данные) Напряжен, част, темп-р	а Вышли Прими
SMZ 33R/485 Pe	гистр.номер 57 љекта	Прими данны
Название записи		Дневн. профил
Начало записи Дата 28.7.2003 Время 15.49:18 Максим, время зап	✓ Немедленно Циклич. запись иси: 0 дней 17 часов.	Коммуникаци Печать Сохранить Отмена
Квантовать По на Примечания Зав	стройкам номер прибора: 00209	

Рис. 13 : Настройка прибора

Окно содержит настройки в том виде, в каком они были в последний раз сохранены на диске. Если хотим показать актуальное состояние настроек в подключенном приборе, выберем команду Настройки Прими.

Настраиваемые параметры прибора сгруппированы в отдельных листах «картотеки». Их можно изменять, сохранять на диске, высылать в подключенный прибор.

3.2.5.1 Общие данные

Лист Общие данные содержит (рис.13):

- тип прибора и его заводской номер
- регистрационный номер (название) объекта, в котором был установлен прибор
- название записи (например обозначение трансформатора в объекте или текст)
- интервал записи

- настройка работы с памятью
- максимальная длина записи, в зависимости от настроенной конфигурации измерений и емкости памяти прибора
- способ квантования
- примечания к кривым

В строке *Название записи* можно задать название измеряемого узла сети или трансформатора. Это название совместно с временем начала измерений будет идентифицировать запись измерений в базе данных на диске компьютера.

Кнопками + , - *мин/сек* можно настроить необходимый интервал записи в диапазоне от 5 секунд до 60 минут.

Переключателем *Немедленно* можно назначить, что прибор должен начать запись немедленно после окончания настройки, или же по достижении установленного времени начала записи. Это время можно задать в соответствующем окне.

Переключателем *Циклическая запись* можно выбрать один из способов поведения прибора при заполнении внутренней памяти. Если этот переключатель не будет активирован, то при заполнении памяти прибор прекратит проводить дальнейшую запись, до тех пор, пока не будет настроен вновь. В противном случае, запись будет продолжаться таким образом, что вновь измеренными данными будут заменяться самые старые результаты измерений. Прибор, таким образом, будет содержать «самые свежие» графики настроенных величин, продолжительность которых зависит от размера памяти прибора.

Тримечания	к кривым
Кривая	Примечание
U1 1 cfi1 Q1 [1	напряжение 1 фазы ток 1 фазы косинус реактивная мощность
Coxpa	ить Отмена

Следующей кнопкой (Квантовать), можно настроить квантование величин на один из способов:

- по настройкам
- по экстремуму U
- по экстремуму І
- по экстремуму соз
- по максимуму активных фазовых мощностей
- по максимуму активной трехфазной мощности

ſ

Далее, в том же листе, можно открыть окно с примечаниями к кривым (рис.14). К каждой сохраняемой величине здесь можно добавить комментарий длиной до 31 знака. С помощью этих примечаний будет легче определять отдельные величины при просмотре их графов на мониторе, или в текстовых протоколах.

3.2.6 Напряжение, частота, температура

В данном листе можно настроить количество и способ записи указанных величин.

В группе *Напряжение* можно задать количество напряжений (кнопкой *Колич.*), и кнопкой *Сохраняется* можно выбрать один из способов сохранения измеряемой величины (среднее, максимум и т.д.).

Токи, мощности ТНD, гармоники	Настройки-
Общие данные Напряжен, част, темп-р	вышли
Напряжение	Прими данные
Колич. 3 Коэфф.ИТН 6300/100	Дневн. профил
-Частота	Коммуникация
Запись включена Сохрандатся - химира сисисиис (лими)	Печать
Температура	Сохранить
Колич. 0	
Сохраняется среднее значение (ср.)	

Рис. 15 : Настройка напряжения, частоты и температуры

В группах Частота и Температура можно подобным способом настроить запись этих величин.

В случае прибора, измеряющего напряжения не прямо, а через ИТН с выходом 57,7/100 В, здесь для информации приведен коэффициент этого ИТН. Однако изменять этот коэффициент можно только в диалоге *Установка прибора* (см. главу выше).

При настройке типа подключения напряжений на схему Звезда, записываются всегда фазовые напряжения, при схеме *Треугольник* или *Аарон* – всегда только линейные напряжения.

3.2.7 Токи, мощности

В данном листе можно настроить измерение и запись токов, коэффициентов мощности, средних мощностей подобным способом, как в предыдущем листе.

Кнопкой *Количество средних мощностей* можно выбрать измерение и запись средних мощностей. Можно выбрать запись от одной до трех средних однофазных мощностей, или средней трехфазной мощности измеряемого объекта. Из списка *Тип мощности* можно выбрать, какой будет запоминаемая мощность - активной, реактивной, или полной.

У мощностей можно выбрать, должны ли сохраняться по отдельности величины при потреблении/генерации активной мощности, или при индуктивном/емкостном характере реактивной мощности.

Также для информации здесь показан коэффициент передачи ИТТ и номинальная мощность измеряемого трансформатора (силового). Однако изменять эти настройки можно только в диалоге *Установка прибора* (см. главу выше).

Общие данные Напряжен, част., темп-ра	П ГНастройки-
Токи, мощности ТНD, гармоники	Вышли Прими
Количество 3	Прими данные
Сохраняется среднее значение (ср.)	Дневн. профили
Коэфф. трасформатора тока 4000 / 5	
Козффициенты мощности Я Запись включ. cos fi Сохраняется среднее значение (ср.)	Коммуникация Печать Сохранить
Номин.мощность измер. 1000 kW трансформатора	Отмена
Тип мощности Реактивная	
Колич. средних мощностей 3 фазовые	

Рис. 16 : Настройка токов и мощностей

3.2.8 THD, гармоники

Здесь можно активировать запись гармонических искажений и выбранных отдельных гармоник независимо для напряжений и для токов. В обоих случаях можно выбрать, будут ли запоминаться величины THD и отдельных гармоник сигнала первой фазы, или всех трех фаз.

Рис. 17 : Настройка THD и высших гармоник

Настройка прибор	a		×
Общие дан Токи, мощнос	ные Напряжа сти ТНD,	ан., част., темп-ра гармоники	Настройки –
THD + гармониі THD + гармониі	ки U в фаз ки I Н	ах 1,2,3 ет	Прими Прими
Высші Колич. наибольш	ие гармоники - уров иих гармоник (макс.2	ень	Дневн. профили
Выбранные ге Выбор Е Г 2. Г Г 4. Г Г 6. Г Г 8. Г Г 10. Г 12. Г	армоники Выбор Выбор 7 3. П 14. 7 5. П 16. 1 7. П 18. 7 9. П 20. 1 11. П 22. 7 13. П 24.	Выбор П 15. Г 17. П 19. Г 21. Г 23. Г 25.	Коммуникация Печать Сохранить Отмена

Если зададим запись THD и отдельных гармоник, далее необходимо определить, каким способом должны быть сохранены гармоники. Можно выбрать один из двух способов:

- Высшие гармоники уровень при этом способе будут сохранены уровни отдельных гармоник в процентах, отнесенные к уровню основной гармоники. Отдельные гармоники (их номера), которые должны быть сохранены, выберем из группы Выбранные гармоники (совместно для U и I).
- Наибольшие гармоники спектр при этом способе будут сохранены номера наибольших гармоник в очередности согласно их уровню (но не будет там величины их

уровней). При этом еще необходимо в окне Количество наибольших гармоник определить, сколько наибольших гармоник (их номеров) должно быть сохранено.

Уровни THD и гармоник сохраняются всегда как средние значения за настроенный интервал записи. Взглядом к частоте вычисления THD и гармонических составляющих, (см. соответствующий раздел выше), имеет смысл настраивать запись этих величин с интервалом 20 и более секунд.

3.2.9 Настройка записи дневных профилей

Наряду со стандартной записью заданных величин, функция *Дневные профили* позволяет проводить независимо еще и запись двух дневных графиков напряжений, токов и PF – коэффициента. Так называемый *Выбранный профиль* (S-профиль) содержит дневной график указанных величин в заданный день, *Максимальный профиль* (М-профиль) содержит подобный дневной график за день, в котором была обнаружена максимальная нагрузка в сети (или максимальная сумма фазовых токов) за все время от начала наблюдения.

При настройке выбранного профиля необходимо задать *Дату записи* в группе *Выбранный профиль*. Надо настроить дату некоторого с последующих дней, иначе запись выбранного профиля не будет осуществлена. Собственно настройка осуществляется при нажатии на кнопку *Вышли дату записи*. Тем самым одновременно стирается предыдущий записанный выбранный профиль.

При записи максимального профиля необходимо кнопкой Обнуление в группе Максимальный профиль определить начало контролируемого периода (тем самым одновременно сотрется предыдущий записанный максимальный профиль).

При нажатии на кнопку Прими актуальные данные, в окне диалога можно будет наблюдать максимумы отдельных токов и их суммы, включая и время их регистрации, определяемые в скользящем 15 минутном окне.

невные і	профили				
- Выбран	ный профил	ь			
Дата:	4.11.		Вышли да	ту записи	
	Макс.ток	Дата регистр	. Время р	егистр.	
11	_				
12	_				
13	_				
1+ 2+ 3	—	—	—		
-Максим	альный про	риль			
День на	чала контро	ля Вторник 11	.1.2005	Обнуление	
	Макс.ток	Дата регистр	. Время р	егистр.	Прими актуальные данные
11	641.3 A	17.1.2005	15:53		
1 2	641.3 A 0.00 A	17.1.2005 13.1.2005	15:53 15:43		Сохранить
1 2 3	641.3 A 0.00 A 0.00 A	17.1.2005 13.1.2005 13.1.2005	15:53 15:43 15:43		Сохранить

Рис. 18 : Настройка записи дневных профилей

Если был записан комплектный дневной профиль (от 00:00 до 23:59), можно его скачать в компьютер и показать в форме графа, так же, как и обычную запись (рис.19).

Нажатием правой кнопки мыши на строке прибора (в главе *Приборы*) и последующим выбором из открывшегося меню команды *Прочитать профили*, записанные профили будут перенесены в компьютер. С сохраненным профилем далее можно работать так же, как и с обычной записью. От стандартной записи он отличается только примечанием в названии записи (S-профиль M-профиль).

Рис. 19 :Перенос записанных дневных профилей в компьютер

3.2.10 Высылание настроек записи в прибор

После настройки всех выше указанных параметров можно командой *Настройки Вышли* переслать эти настройки в подключенный прибор. Если хотим настроенную конфигурацию сохранить, то предварительно кнопкой *Сохранить* можем записать ее на диск.

Перед высылкой настроек надо помнить, что при этом будут стерты все запомненные ранее в приборе результаты измерений. Поэтому перед настройкой необходимо перенести из прибора в компьютер последние записи (описание см. ниже).

После пересылки параметров прибор начнет проводить измерения и запись по новым настройкам. Кабель связи теперь можно отключить.

Настройка записи не влияет на индицируемые данные на лицевой панели прибора, так же как и с клавиатуры прибора нельзя изменять эти настройки.

Для правильной записи измеренных величин в память прибора необходимо, чтобы был заряжен внутренний резервный аккумулятор. Поэтому рекомендуем сначала оставить прибор подключенным к питающему напряжению хотя бы на неделю, после чего можно задать необходимый режим записи.

3.2.11 Перенос записанных данных в компьютер

Графики величин, записанные в памяти прибора, можно перенести в компьютер через местную или через дистанционную линию связи. Перенос графиков запустим кнопкой *Прими Данные*. Перенесенные графики появятся на мониторе, сохранятся на диске, и в базе данных измерений появится новая строка. Отдельные записи обозначены иконкой (строкой) с датой начала записи, названием записи и данными прибора, который проводил измерения.

Если после переноса данных не будут проведены новые настройки, прибор продолжит измерения и запись в соответствии с актуальными настройками.

3.2.12 Работа с измеренными кривыми

Отдельные измерения, сохраненные в соответствующем объекте в главе *Измерения*, можно вызвать на индикацию двойным кликом мыши при курсоре наведенном на выбранную запись. Откроется так называемое окно графа (см. "CETIS32- общая часть").

Главную часть окна графа составляет собственно граф. В окне графа показаны кривые выбранных величин.

Отдельные кривые можно выбирать с помощью кнопок в панели величин, и при необходимости их скрывать или показывать. Для определения мгновенных значений отдельных величин в конкретной точке служит курсор. После активации курсора соответствующей кнопкой он появится в *окне графа*. Курсор можно перемещать с помощью мыши или клавишами \leftarrow , \rightarrow . Временные данные под *окном графа* определяют текущее положение курсора. Числовые значения на панели величин показывают соответствующие значения отдельных индицируемых величин. Числовое значение этих величин можно определить и с помощью измерительных шкал, расположенных справа или слева от *окна графа*.

По названию панелей отдельных групп величин можно определить, как эти величины были квантованы и сохранены. Способ определяется следующими индексами:

- срд среднее значение за интервал записи
- макс максимальное значение за интервал записи
- мин минимальное значение за интервал записи
- о мгновенное значение на конце интервала записи
- (t) мгновенное значение в момент экстремума управляющей величины «среза» (см. описание квантования величин)

Для работы с измеренными кривыми служат кнопки инструментов в верхней части окна. Их назначение раскрывают графические символы, более подробно они описаны в руководстве "CETIS32- общая часть").

3.2.13 Отчет об измерении

Наряду с графическим протоколом, эта функция позволяет показать или распечатать и отчет об измерениях. Отчет содержит в цифровой форме важнейшие статистические данные об измерениях. Здесь приведены минимальные, максимальные, и средние значения напряжений отдельных фаз за измеряемый период, время (в процентах от всего периода) нахождения величины за пределами контрольной полосы, настроенной в меню *Настройка – Стандартные диапазоны*, информация о загрузке трансформатора по отношению к номинальному току и т.д. В столбце *Всего* приведено среднее значение отдельных фазовых величин.

3.2.14 Вычисление мощностей

Если записанные измерения не содержат мощностей, то можно провести дополнительное вычисление мощностей из записанных кривых напряжений, токов, и коэффициентов мощности. Можно выбрать вычисление активной, реактивной и полной мощности, однофазной и трехфазной. Выбрав команды *Граф – Вычисли мощности*, откроем окно *вычисления мощности* (рис.21).

Рис. 21 : Вычисление мощности

Вычисление мощ	ности 🗵
Вывод номер	1
Активн. мощность	
Реакт. мощность	
Полная мощность	
Вычислить	Отмена

Необходимые мощности зададим в соответствующих окнах, кликнув мышкой. Нажмем кнопку *Вычислить*. После проведения вычисления в списке измеренных кривых появятся и вычисленные мощности, возможно, что одновременно они появятся и в окне графа вместе со шкалой мощностей (в kW, kVAr или kVA). Если мощности среди графов не появятся, то необходимо активировать их индикацию командами *Граф – Добавить панель* (если было уже показано четыре панели, надо сначала хотя бы одну панель удалить – см. руководство "CETIS32- общая часть").

При работе с вычисленными мощностями необходимо четко усвоить, из каких кривых напряжений, тока и коэффициента мощности были эти значения рассчитаны (способ вычисления описан выше).

3.2.15 Экспорт данных в файл DBF

Командой Граф – Экспорт в DBF отдельные измеренные величины будут переведены в цифровую форму и сохранены в файле формата DBF, который можно импортировать в табличный процессор для дальнейшей обработки (значение коэффициентов мощности и мощностей положительно в случае индуктивного характера, отрицательно при емкостном характере)

3.2.16 Управление электросчетчиком

Приборы в исполнении "Е" имеют встроенный четырех-квадрантный трехфазный электросчетчик, поэтому наряду с основным назначением, можно их использовать в качестве вспомогательного счетчика.

Если прибор оборудован электросчетчиком, то в меню *Настройка прибора* появится кнопка *Электросчетчик*. При ее выборе откроется окно Электросчетчик (Рис. 22).

Окно содержит значения трехфазной электрической работы, сгруппированные по трем тарифам, и им соответствующие коэффициенты мощности, значения четвертьчасовых максимальных мощностей с временем их регистрации как в отдельных фазах так и трехфазное значение, время обнуления, время отсчета и настройку тарифных зон.

При открытии окна будет показано состояние величин, которое было последним сохранено на диске. Нажатием на кнопку *Прими данные* будет прочитана актуальная информация из прибора. Прочитанные данные содержат как актуальные значения трехфазной электрической работы и значения четвертьчасовых максимальных мощностей, так и актуальные настройки тарифных зон. Время отсчета и время обнуления прочитано из внутренних часов прибора (не из компьютера!). Прочитанную информацию можно сохранить на диске (кнопка *Сохранить*), или распечатать (кнопка *Печать*).

При необходимости изменения тарифных зон надо настроить новую комбинацию и кнопкой *Вышли тариф* отправить ее в прибор. С этого момента прибор начнет записывать показания с учетом вновь настроенных тарифов. Если хотим обнулить состояние электросчетчика, используем для этого кнопку *Обнуление*. При этом обнулятся как счетчики электрической работы, так и зарегистрированные значения четвертьчасовых максимальных мощностей.

Все операции, проводимые с электросчетчиком, никак не влияют на настройки и на сам процесс сохранения остальных величин, измеряемых прибором. Так же как и настройка записей прибора, никак не влияет на настройки электросчетчика, только необходимо принять во внимание, что при отправке в прибор настроек записи, актуализируется состояние внутренних часов прибора (переносится время из компьютера), а последнее запомненное время обнуления будет отвечать предыдущей настройке часов.

Ferrudo		_		Koododo
ариф	- Эл.раоота активна Потребл. (import)	н Отдача (export)	Ол.работа реактивная Индуктивная (import) Емкостная (expo	nt)
1 2 3 Всего	0000000.0 kWh 0000000.0 kWh 0000000.0 kWh 0000000.0 kWh	0000000.0 kWh 0000000.0 kWh 0000000.0 kWh 0000000.0 kWh	0000000.0 kvarh 0000000.0 kva 0000000.0 kvarh 0000000.0 kva 0000000.0 kvarh 0000000.0 kva 0000000.0 kvarh 0000000.0 kva	arh 0.000 arh 0.000 arh 0.000 arh 0.000
1/- Фаза 1 2 3 3F	4 часовая максималь Значение —— kW —— kW —— kW	эная мощность Время регистраци 	Тариф потребления и 0 1 2 3 4 5 6 7 8 2 1 1 1 1 1 1 1 1 12 13 14 15 16 17 18 19 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 10 11 1 1 1 0 21 22 23 1 1 1 1
Время Время	обнуления 26.1.20 отсчета 26.1.20	05, 13:27:36 05, 13:27:42	Прими данные Обнуление Вышли тариф Печать	Сохранить Отмена

Рис. 22 : Электросчетчик

3.3 Описание программы RETIS для прибора "SMZ 33"

Программа Retis предназначена для наблюдения за актуальным состоянием прибора и последующей архивации измеренных данных. Программа позволяет одновременно наблюдать за несколькими приборами, а также проводить их настройку.

Программа поставляется в двух версиях. Базовая версия является бесплатной и поставляется с прибором на прилагаемом CD – диске, актуальную версию можно скопировать с сайта. Программа включает демо-версию, позволяющую ознакомиться с ее работой без подключения прибора.

Общие принципы работы с программой описаны в ее руководстве. Если не будет указано иначе, то приведенными ниже возможностями обладают базовая и расширенная версии программы.

3.3.1 Исходные настройки

Программа позволяет задать так называемые исходные настройки для отдельных классов приборов. Новый прибор автоматически примет исходные настройки в зависимости от принадлежности к конкретному классу. Для приборов класса SMZ, SMY можно задать следующие исходные настройки:

- индицируемые панели
- индицируемые величины
- диапазоны величин

Окно исходных настроек открывается командами Настройка > Общие настройки > SMZ, SMY (из открывшегося меню). Откроется окно как на рис. 23.

Диапазоны величин устанавливаются автоматически, в зависимости от настроенных коэффициентов передачи трансформаторов тока и напряжения, или их можно задать вручную в базовых единицах измерения.

3.3.2 Подключение прибора к РС и добавление его в базу данных.

Прибор можно подключить к компьютеру штатным кабелем через местную линию коммуникации (разъем СОМ на панели прибора), или через дистанционную линию связи (если прибор ею оборудован). Для наблюдений актуальных данных местная линия не очень подходит из-за своих

параметров, однако при достаточных навыках работы с программой Retis, можно ее использовать для настройки прибора, или для кратковременного наблюдения актуальных данных. Прибор добавляем в список командами **Прибор** > **Добавить прибор** из меню (рис. 24).

Добавить прибор	X				
Название прибора:	Прибор4				
Тип: авто	SMY,SMZ				
Адрес прибора:	1				
Порт:	COM1 •				
Номер телефона:					
🔽 Активный прибор					
🔽 Индикация текущ	их данных				
🔽 Запись в файл					
🗖 Плавающе окно					
Архивный файл : (без префикса)	C:\Program Files\KMB syst				
Длина записи:	1 день 💌				
🗹 Циклическая запи	Cb				
Расширенные настрой	йки ОК Конец				

Рис. 24 : Добавление прибора в список

В диалоге **Добавить прибор** задаем адрес (как он настроен в приборе) и определяем порт, к которому подключен прибор (чаще всего COM1).

ВНИМАНИЕ!!! Настраиваемые параметры коммуникации для данного порта (диалог общих настроек - Настройка > Общие настройки> Общие настройки), должны быть одинаковыми с параметрами коммуникации, заданными в приборе! Потом кликом на авто мы можем проконтролировать, идет ли коммуникация с прибором. При правильной настройке появится тип прибора SMY, SMZ. Тип прибора можем задать и вручную, выбрав его из выпадающего списка (при нажатии на стрелку).

3.3.3 Дата-база приборов (Список приборов)

Приборы, включенные в дата-базу, появятся в списке приборов (рис. 25). С помощью этого диалога можно:

- Активировать, или дезактивировать приборы
- У активного прибора включить или выключить индикацию
- У активного прибора включить или выключить индикацию плавающего окна
- У активного прибора включить или выключить запись в архивный файл
- Вызвать диалог настроек или свойств прибора
- Добавить, или удалить прибор
- У полной версии скачать данные из памяти прибора

Рис. 25 :	Список	приборов
-----------	--------	----------

Список приборов				×
Название прибора (порт,адрес)	Активность	Индикация	Запись	Плав.окно
Pristroj1 (COM1,1)				
Pristroj2 (COM1,2)				
Прибор3 (СОМ1,5)	∠			
4				Þ
Настройка Свойства Добав:	прибор Удал	и прибор	Ірими дані	ные Конец

3.3.4 Настройка параметров прибора

С помощью параметров прибора определяются характеристики и функционирование входных и выходных сигналов, подключенных к прибору. Параметры прибора включают в себя так называемые базовые (основные) параметры и дополнительные.

Настройки выбранного прибора (синяя строка на рис.25) вызываются командой Настройка в диалоге Список приборов (Рис.26)

Рис. 2	6 : Ha	стройки прибо	рра
Настройки прибора (Прибор3)			×
Установка Настройка выходов Настро	йка запис	сей	1
Тип прибора: SMZ ERT/485			
Способ подключения: Прямо	•	Дист. интерфейс	485
Тип подключения: Звезда	•	🗖 Протокол Modbus RT	ru
Номин. напряжение: 230	v	Четность:	Не контролир 🔽
Коэффициент ИТН:		Скорость передачи:	9600 Bd
10000 / 100 -		Адрес:	1
Козффициент ИТТ:		🗹 Модем	
500 / 5		Строка инициализаци	и модема:
Козффициент ИТТ4:		ATB0&D0E0&K0&L0Q0V0	0×1 S0=1 S10=100
Номин. мощность: 400	kVA		
Температура при 4 mA: -30	с		
Температура при 20 mA: 70	С		
			Прими Вышли
		Принять	все Отмена Справка

3.3.4.1 Базовые (основные) параметры прибора

Базовые параметры индицируются выбором закладки Установка в диалоге настроек прибора (Рис.26).

Основными параметрами прибора являются:

- 1. способ подключения напряжения (прямо или через ИТН)
- 2. тип подключения напряжений и токов (звезда, треугольник или Аарон)

3. номинальное напряжение (в случае измерения через ИТН это непосредственно величина напряжения на первичной стороне ИТН, устанавливается прибором автоматически)

4. коэффициент передачи ИТН (задаются номинальные напряжения первичной/ вторичной обмоток ИТН)

5. коэффициент передачи ИТТ (задаются номинальные токи первичной/ вторичной обмоток ИТТ)

6. номинальная мощность трансформатора (в случае, если эта величина имеет смысл)

7. диапазон температурного датчика (если подключен)

8. параметры дистанционной коммуникации (скорость, адрес, возможно и тип протокола)

Указанные параметры обычно настраиваются один раз и навсегда при подключении прибора к измеряемому узлу сети, или же изменяются очень редко, например, при реконструкции самой измеряемой сети, или при изменении параметров главной линии коммуникации и т.д.

При вызове диалога **Настройки прибора** программа попытается прочитать данные из прибора. Если это не удастся, будет предложено прочесть настройки из файла, или закрыть диалог. Параметры, показанные в закладке **Установка**, можно отослать в прибор кнопкой **Вышли**, или принять их из прибора кнопкой **Прими**.

Все настройки целиком (установка, настройка выходов, настройка записей) можно сохранить на диске, или прочесть их из упомянутого файла с помощью иконок внизу слева окна диалога.

ВНИМАНИЕ!!! При отправке базовых параметров в прибор, будут стерты все данные, записанные в памяти прибора, и состояние внутреннего электросчетчика будет обнулено.

3.3.4.2 Дополнительные параметры прибора

У приборов, оборудованных соответствующими выходами, можно настроить работу этих выходов с помощью так называемых дополнительных параметров. Дополнительные параметры индицируются выбором команды Настройка в диалоге Список приборов и закладки Настройка выходов в диалоге настроек прибора (Рис.27).

Настройки прибора (Прибор3)	×
Установка Настройка выходов Настройка записей	
Импульсные выходы :	
Выход Р1: 🔽 Передавать Электрическая работа: Активн, импорт 🔹 0 имп/КWh	
Выход Р2: 🔽 Передавать Электрическая работа: Активн.,импорт 💽 0 имп/kWh	
Выходные реле:	
Pene 1 Pene 2	
🔽 Активировать	
Управляющая величина: U 🔹 1 🔹	
Над 🔽 границей Включить 💌	
56 % HOM REALIVER	
Граница переключения:	
Гистерезис (*/-): 3 % ном. величины	
Время блокировки: 25 сек	
🔽 Временная синхронизация	
Прими Вышли	
🖾 📳 Принять все Отмена Спра	вка.

Рис. 27 : Настройка дополнительных параметров

Дополнительные параметры определяют:

- 1. функционирование выходных реле
- 2. функционирование импульсных выходов
- 3. работу временной синхронизации
- 4. работу аналоговых выходов

При вызове диалога **Настройки прибора** программа попытается прочитать данные из прибора. Если это не удастся, будет предложено прочесть настройки из файла, или закрыть диалог. Параметры, показанные в окне **Настройка выходов**, можно отослать в прибор кнопкой **Вышли**, или принять их из прибора кнопкой **Прими**.

Все настройки целиком (установка, настройка выходов, настройка записей) можно сохранить на диске, или прочесть их из упомянутого файла с помощью иконок внизу слева окна диалога. При отправке дополнительных параметров в прибор, будут сохранены без изменений все данные, записанные в памяти прибора, а также состояние внутреннего электросчетчика.

3.3.5 Настройка записей

В режиме on-line программа Retis принимает, индицирует и последовательно сохраняет на диске всегда все измеренные прибором величины, независимо от настроек записи данных (во внутреннюю память прибора) в самом приборе. Полная версия программы позволяет закачивать данные из внутренней памяти прибора (off-line данные) и сохранять их отдельно в архиве, или залатать ими on-line данные (может пригодиться, например, при перерывах в коммуникации, или отключении компьютера).

Настройки прибора (Прибор3)	
Установка Настройка выходов Настройк	ка записей
Название записи: ТП 2	ТНD + гармоники U: 🛛 в фазе 1
Период записи: 15 сек. 💌	ТНD + гармоники I: 🛛 в фазах 1,2,3 💽
Время старта Немедленно 🗖	Записывать: Уровень 💌
17:47:18 • 30.10.2005 •	Четные 🗹 2. 🔽 4. 🔽 6. 🗹 8. 🔽 10. 🔽 12. 🗹
🔽 Циклическая запись	Нечетные 🗖 3, 🗖 5. 🗖 7. 🗖 9. 🗖 11. 🗖 13. 🗖
Квантовать по: настройке 🗸	Четные 🗖 14. 🗖 16. 🗖 18. 🗖 20. 🗖 22. 🗖 24. 🗖
Колич.: Записать:	Нечетные 🗹 15. 🔽 17. 🔽 19. 🔽 21. 🔽 23. 🗹 25. 🔽
Напряж.: 3 🔹 Среднее значение 💌	вел примечание
Ток: 3 🔹 Среднее значение 🔹	
РF: РF • Среднее значение •	
Частота нет 💽 Среднее значение 🝸	12
Темп-ра: нет 🔹 Среднее значение 🝷	PF1
Тип мошности: Активн.	PF2 PF3
Колич. средних	P1
мощностей: рафазовые	P3
⊻ отдельно импорт/экспорт	
Емкость памяти: – мин.	Прими Вышли
	Принять все Отмена Справка

Рис. 28 : Настройка записей

Если хотим, чтобы прибор сохранял измеренные данные в своей внутренней памяти, то необходимо для этого настроить в приборе режим записи. Настройкой записей определяются сохраняемые величины, и способ их сохранения.

Настройка записей индицируется выбором команды Настройка в диалоге Список приборов и закладки Настройка записей в диалоге настроек прибора (Рис.28).

При вызове диалога **Настройки прибора** программа попытается прочитать данные из прибора. Если это не удастся, будет предложено прочесть настройки из файла, или закрыть диалог. Параметры, показанные в окне **Настройка записей**, можно отослать в прибор кнопкой **Вышли**, или принять их из прибора кнопкой **Прими**.

Все настройки целиком (установка, настройка выходов, настройка записей) можно сохранить на диске, или прочесть их из упомянутого файла с помощью иконок внизу слева окна диалога. При отправке **Настроек записей** в прибор, будет сохранено без изменений состояние внутреннего электросчетчика (см. также главу 3.3.7), а все данные измерений, ранее сохраненные в памяти прибора, будут при этом стерты и начнется новая запись по новым настройкам.

В строке **Название записи** можно задать название измеряемого узла сети или трансформатор. Это название предназначено для использования в программе Cetis.

В окне **Период записи** можно задать необходимый интервал записи в диапазоне от 5 секунд до 60 минут. Переключателем **Немедленно** можно назначить, что прибор должен начать запись немедленно после окончания настройки, или же по достижении установленного времени начала записи. Это время можно задать в соответствующем окне.

Переключателем **Циклическая запись** можно выбрать один из способов поведения прибора при заполнении внутренней памяти. Если этот переключатель не будет активирован, то при заполнении памяти прибор прекратит проводить дальнейшую запись, до тех пор, пока не будет настроен вновь. В противном случае, запись будет продолжаться таким образом, что вновь измеренными данными будут заменяться самые старые результаты измерений. Прибор, таким образом, будет содержать «самые свежие» графики настроенных величин, продолжительность которых зависит от размера памяти прибора.

В следующем окне можно настроить квантование величин на один из способов:

- по настройкам
- по экстремуму U
- по экстремуму І
- по экстремуму соз
- по максимуму активных фазовых мощностей
- по максимуму активной трехфазной мощности

В группах **Напряжение** и **Ток** можно задать необходимое количество токов и напряжений, и выбрать из списка один из способов сохранения измеряемой величины (среднее, максимум и т.д.). В группах **PF, Частота и Температура** можно подобным образом настроить способ записи этих величин.

При настройке типа подключения напряжений по схеме звезды, сохраняются в памяти всегда только фазовые напряжения, при подключении по схеме треугольника или Аарона – всегда только линейные напряжения.

В окне **Количество средних мощностей** можно настроить измерение и запись средних мощностей. Можно выбрать запись от одной до трех средних однофазных мощностей, или средней трехфазной мощности измеряемого объекта. Из списка **Тип мощности** можно выбрать, какой будет запоминаемая мощность - активной, реактивной, или полной.

У мощностей можно выбрать, должны ли сохраняться по отдельности величины при потреблении/генерации активной мощности, или при индуктивном/емкостном характере реактивной мощности.

В группе **гармонических искажений** и выбранных отдельных гармоник можно активировать запись независимо для напряжений и для токов. В обоих случаях можно выбрать, будут ли запоминаться величины THD и отдельных гармоник сигнала первой фазы, или всех трех фаз.

Если зададим запись THD и отдельных гармоник, далее необходимо определить, каким способом должны быть сохранены гармоники. Можно выбрать один из двух способов:

- Уровень при этом способе будут сохранены уровни отдельных гармоник в процентах, отнесенные к уровню основной гармоники. Отдельные гармоники (их номера), которые должны быть сохранены, выберем из их общей группы (совместно для U и I).
- Спектр при этом способе будут сохранены номера наибольших гармоник в очередности согласно их уровню (но не будет там величины их уровней). При этом еще необходимо в окне Количество запоминаемых гармоник определить, сколько наибольших гармоник (их номеров) должно быть сохранено.

Уровни THD и гармоник сохраняются всегда как средние значения за настроенный интервал записи. Взглядом к частоте вычисления THD и гармонических составляющих, (см. соответствующий раздел выше), имеет смысл настраивать запись этих величин с интервалом 20 и более секунд.

3.3.6 Работа с актуальными данными

Если в диалоге Список приборов включена активность прибора и включена индикация (глава 3.3.3), на мониторе появится следующее окно прибора (Рис.29):

Рис. 29 : Окно прибора

Здесь можно наблюдать измеренные данные в виде таблицы или графиков. Также можно контролировать последние события, произошедшие во время измерений, указанное на графике. Подобным образом можно работать и с архивными данными. Больше подробностей можно найти в описании программы.

3.3.7 Управление электросчетчиком

Приборы в исполнении "Е" имеют встроенный четырех-квадрантный трехфазный электросчетчик, поэтому наряду с основным назначением, можно их использовать в качестве вспомогательного счетчика.

Если прибор оборудован электросчетчиком, то в меню появится строка **Настройка** > **Электросчетчик**. При ее выборе откроется окно **Электросчетчик** (Рис. 30).

Окно содержит значения трехфазной электрической работы, сгруппированные по трем тарифам, и им соответствующие коэффициенты мощности, значения четвертьчасовых максимальных мощностей с временем их регистрации как в отдельных фазах так и трехфазное значение, время обнуления, время отсчета и настройку тарифных зон.

При открытии окна будет показано состояние величин, которое было последним сохранено на диске. Нажатием на кнопку **Обновить значения** будет прочитана актуальная информация из прибора. Прочитанные данные содержат как актуальные значения трехфазной электрической работы и значения четвертьчасовых максимальных мощностей, так и актуальные настройки тарифных зон. Время отсчета и время обнуления прочитано из внутренних часов прибора (не из компьютера!).

При необходимости изменения тарифных зон надо настроить новую комбинацию и кнопкой Вышли тариф отправить ее в прибор. С этого момента прибор начнет записывать показания с учетом вновь настроенных тарифов.

Если хотим обнулить состояние электросчетчика, используем для этого кнопку **Обнулить значения**. При этом обнулятся как счетчики электрической работы, так и зарегистрированные значения четвертьчасовых максимальных мощностей.

Все операции, проводимые с электросчетчиком, никак не влияют на настройки и на сам процесс сохранения остальных величин, измеряемых прибором. Так же как и настройка записей прибора, никак не влияет на настройки электросчетчика, только необходимо принять во внимание, что при отправке в прибор настроек записей, актуализируется состояние внутренних часов прибора (переносится время из компьютера), а последнее запомненное время обнуления будет отвечать предыдущей настройке часов.

	Активна	я работа	Реактивная работа		1
	Импорт [kWh]	Экспорт [kWh]	Индуктивн. [kvar	h] Емкостная (kvarh)	Козф. мощности
тариф 1	Edit	Edit	Edit	Edit	Edit
тариф 2	Edit	Edit	Edit	Edit	Edit
тариф 3	Edit	Edit	Edit	Edit	Edit
всего	Edit	Edit	Edit	Edit	Edit
	Величина [kW]	Время обнару	жения	Edit	
	1/4 часовая м	аксимальная мощн	ость	емя оонуления. Edit	
	Edit	Edit	Br	ема отсчета.	
Фаза і	E dit	Edit		Edit	
Фаза 2	Eun	Edit			
Фаза 3	Edit	Edit			
3F	Edit	Edit			
Тариф по	требления				
1. Edit	🗧 5 Edit 🛟 9.	Edit 13. Ed	it 👙 17. Edit	21. Edit	Јоновить значени
2. Edit		Edit 14 Ed	it 🚽 18. Edit	÷ 22. Edit ÷	Обнулить значени
3. Edit	÷ 7. Edit ÷ 11	Edit 15. Ed	it 🗧 19. Edit	÷ 23. Edit ÷	Вышли тариф
a lean					

Рис. 30 : Электросчетчик

Если в диалоге **Список приборов** включена активность прибора, и включена запись (глава 3.3.3), программа Retis сохраняет состояние электросчетчика в архивном файле на диске с интервалом 15 минут. Эти величины можно вызвать выбором команды меню **Настройка > Электросчетчик** у соответствующего индицируемого архивного файла.

3.4 Проблемы при управлении прибором через компьютер, их возможные причины и способы устранения

Проблема : При настройке прибора или при скачивании данных в компьютер программа пишет: Прибор не отвечает:

- при коммуникации через местную линию связи надо проверить подключение кабеля (на приборе при присоединении кабеля должно появиться сообщение Loc), потом проверить настройку параметров коммуникации в программе (правильное задание номера COM – порта, скорость 9600 Bd, адрес - 1)
- при коммуникации через дистанционную линию надо проверить подключение кабеля связи, преобразователя уровней 485/232 (при его наличии), затем проверить настройку параметров коммуникации в программе (скорость 9600 Bd, адрес) и в приборе (вручную в настройке параметров четвертой группы или с помощью компьютера через местную линию в диалоге Установка прибора)

Проблема : При скачивании данных из прибора в компьютер программа выдает сообщение **Ошибка** памяти хх, проведите инициализацию:

- настроить прибор и провести пробную (короткую) запись если ошибка повторяется, прибор необходимо отремонтировать у производителя.
- если прибор был долгое время отключен от питающего напряжения, оставить его включенным на несколько дней (для зарядки аккумулятора), а потом провести кратковременную пробную запись.

Проблема : При скачивании данных из прибора в компьютер программа выдает сообщение Устройство не содержит ни одной записи :

 при настройке была задана запись в заданное время, которое еще не наступило (можно проверить, прочитав настройки прибора)

Проблема : Граф коэффициента мощности, THD или высших гармоник содержит значения "**PWOff**", хотя при этом значения токов и напряжений не означены как "**PWOff**".

• значения тока, или напряжения слишком малы, так что указанная величина не может быть измерена прибором

4. СЕРВИС И ОБСЛУЖИВАНИЕ

Обслуживание

В течение работы прибор SMZ 33 не требует никакого обслуживания. Необходимо только соблюдать указанные условия работы и беречь приборы от грубого механического вмешательства и воздествия воды либо различных химикатов, которые могли бы вызвать механическое повреждение.

Цепь питающего напряжения внутри прибора защищена плавким предохранителем T0,16L, обеспечивающим отключение прибора при нештатном напряжении или неисправности. Предохранитель не доступен для обслуживающего персонала, прибор необходимо выслать поставщику, который обеспечит его замену.

Установленный в приборе литиевый аккумулятор типа VL2020 способен, при полном заряде и при средней температуре 20°С, и при типовом потребляемом прибором токе (< 10 uA), обеспечить сохранность данных в памяти прибора и в контуре реального времени, в течение примерно 30 дней без подключения питающего напряжения. Взглядом к тому, что прибор предназначен для непрерывной работы, и аккумулятор должен обеспечивать сохранность данных только при временных исчезновениях напряжения, емкость его является достаточной.

При наличии питающего напряжения аккумулятор заряжен. Если наступит полный разряд аккумулятора, то полный его заряд будет достигнут примерно через 60 дней после подключения питающего напряжения. В случае такого рабочего режима прибора, когда доходит к провалам питающего напряжения, для нормальной работы аккумулятора (то есть для сохранения данных) необходимо, чтобы отношение времени, когда питающее напряжение подключено, ко времени его отсутствия, было хотя бы 2/1 или больше. Кроме того, максимальное время отсутствия питающего напряжения з0 дней.

Долговечность аккумулятора зависит от условий эксплуатации (особенно от температуры, количества циклов заряда, глубины разряда), однако ее типовое значение должно отвечать предполагаемому сроку службы прибора (около 10 лет). При возможной неисправности аккумулятора необходимо выслать прибор поставщику для проведения ремонта.

Примечание: приборы в специальном исполнении могут быть вместо аккумулятора оборудованы литиевой батареей, обеспечивающей сохранность данных в течение 8 лет без питающего напряжения.

Внимание !!! При возможной самостоятельной замене аккмулятора он ни в кем случае не может быть заменен на классическую литиевую батарею, которую нельзя заряжать !!! Это грозит взрывом батареи со всеми вытекающими последствиями !!!

Сервис

В случае неисправности прибора необходимо направить рекламацию в адрес вашего поставщика или производителя по адресу:

KMB systems , s.r.o. Dr. M. Horákové 559 460 06 LIBEREC 7 CZECHIA tel. 048 / 5130314 fax 048 / 2739957 e-mail : <u>kmb@kmb.cz</u> internet : <u>www.kmb.cz</u> Изделие при этом должно быть хорошо упаковано, чтобы исключить возможные повреждения при транспортировке. С прибором необходимо прислать описание неисправности.

В течение гарантийного срока необходимо прислать и заполненный гарантийный лист. Если требуется послегарантийный ремонт, необходимо приложить заявку.

5. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Измеряемые величины

Напряжение	20 ÷ 500 V _{off} (+/-1 % +/-0.5V)
Ток ($I_{nom} = 5 A_{eff}$)	0,01 ÷ 6 A _{eff} (+/-1 % +/-0,01A)
Длит. перегрузка(IEC 258)	Напряжение 800 V _{eff} , ток 10 А _{eff}
Частота	42 ÷ 80 Hz (0.2 %)
Коэф.мощн. (PF, cos fi)	0,00 ÷ 1,00 (+/-2 %, при токовой нагрузке от 10 %)
Гармонич. составляющие / THD	до 25. порядка, 0 ÷ 200 % / 0 ÷ 800 % (+/-10 %, при напряжении или токе от 10% диапазона измерений)
мощности (активн./реактивн. / полная)	0 ÷ 10 kW/kvar/kVA (+/-2 %, при токе от 10 % номинального)
Электрическая работа (активн. /	0,1-999.999.999 kWh (+/-2 %)
Температура	Зависит от диапазона датчика (температура/ток 4-20mA) (1 %)

Остальные характеристики

Сопротивление входа напряжения	> 1 MΩ
Сопротивление входа тока	< 10 mΩ
Напряжение питания	230 V или 115 V / 42-80 Hz (+15 / -20 %), max. 10 VA
Релейные выходы /ว~\	Переключающие контакты 230V AC / 4A
Импульсные выходы (2x)	Оптически развязаны (и между собой), max. 30V DC / 50 mA , минимальная длительность импульс/пауза 100 ms
Вход синхронизации	Оптически развязан , 12V DC / 20 mA минимальная длительность импульса 100 ms, минутный или четвертьчасовой сигнал
Рабочее	класс С1 по IEC 654-1
Рабочая	-25 до + 50°С
Рабочая влажность	5 - 100 %
Температура складирования	-40 + 70°C
Категория перенапряжения в установках	III по EN 61010-1

ЕМС – излучение	EN 55011 (класс А), EN 55022 (класс А)	
	(изделие не предназначено для применения в быту)	
ЕМС - стойкость	по EN 61000-4-2, EN 61000-4-3, EN 61000-4-4,	
	EN 61000-4-5, EN 61000-4-11	
Период измерений	около 3 s	
Интервал регистрации	5 s ÷ 60 min.	
Память	max. 1024 kB	
Запись измеренных величин	время, дата, минимум, максимум, среднее, последний замер	
Порт для дистанционной коммуникации	RS-232, RS–485 или CAN, протокол KMB или Modbus-RTU	
Конструкция		
Исполнение	Пластмассовый корпус DIN 43700	
Дисплей	LED, 3 x 4 знака семисегментные + 4 знака матричные	
Защита	IP 4х, задняя стенка IP 2х	
Размеры	144 х 144 mm, монтажная глубина 80 mm	
Монтажное окно	138 x 138 mm допуск –0/+1 mm	
Macca	около 1,5 kg	

6. Примеры подключения

Измерительный прибор SMZ-33 стандартное подключение 3 x 230/400V схема соединений измеряемых сигналов и питания

61

Измерительный прибор SMZ-33

схема соединений входов синхронизации импульсных выходов и термометра

Измерительный прибор SMZ-33 схема соединений порта дистанционной коммуникации RS-485

