5/2	Introduction
	Circuit-breakers/ non-automatic circuit-breakers up to 6300 A, SENTRON WL
5/4	General data
5/28	3-pole, fixed-mounted design
5/30	3-pole, withdrawable design
5/32	4-pole, fixed-mounted design
5/34	4-pole, withdrawable design
5/36	Options
5/44	Accessories/spare parts
5/56	Project planning aids
	Circuit-breakers, approved acc. to UL 489, up to 5000 A, SENTRON WL
5/68	General data
5/73	3-pole, fixed-mounted design
5/74	3-pole, withdrawable design
5/75	Accessories/spare parts
	Non-automatic circuit-breakers for DC, up to 4000 A, SENTRON WL
5/77	General data
5/78	3- and 4-pole, fixed-mounted design
5/79	3- and 4-pole, withdrawable design
5/80	Accessories/spare parts
5/81	Project planning aids
	Circuit-breakers up to 3200 A, discontinued series
5/82	General data
5/100	3-pole, fixed-mounted design
5/101	3-pole, withdrawable design
5/102	4-pole, fixed-mounted design
5/103	4-pole, withdrawable design
5/104	Options
5/108	Accessories/spare parts
5/116	Project planning aids

[^0]5/126
5/127
5/128
5/129
5/130

Air Circuit-Breakers (ACBs)

Introduction

Overview

Circuit-breakers/non-automatic circuit-breakers
up to 6300 A, SENTRON WL

Rated current I_{n}	A	$\begin{aligned} & 630,800,1000,1250, \\ & 1600 \end{aligned}$	$\begin{aligned} & 800,1000,1250,1600,2000,2500, \\ & 3200 \end{aligned}$	4000, 5000, 6300
Number of poles		3 -pole, 4-pole	3-pole, 4-pole	3-pole, 4-pole
Rated operating voltage $U_{\text {e }}$	$\begin{aligned} & A C V \\ & D C V \end{aligned}$	up to 690	up to 690/1000	up to 690/1000
Rated ultimate short-circuit breaking capacity at AC 415 V	kA	50/65	55/80/100	100
Endurance	Operating cycles	20000	15000	10000
Service position				
Degree of protection with cover without cover		$\begin{aligned} & \text { IP55 } \\ & \text { IP20 } \end{aligned}$	$\begin{array}{\|l\|l\|} \text { IP55 } \\ \text { IP20 } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { IP55 } \\ \text { IP20 } \end{array}$
Dimensions 3-/4-pole	W mm H mm D mm	Fixed-mounted Withdrawable $320 / 410$ $320 / 410$ 434 465.5 291 471	Fixed-mounted Withdrawable $460 / 590$ $460 / 590$ 434 465.5 291 471	Fixed-mounted Withdrawable $704 / 914$ $704 / 914$ 434 466.5 291 471

Electronic overcurrent trip units of SENTRON WL circuit-breakers

Type	ETU15B	ETU25B
Overload protection	\checkmark	\checkmark
Short-time delayed short-circuit protection	-	\checkmark
Instantaneous short-circuit protection	\checkmark	\checkmark
Neutral conductor protection	-	-
Ground-fault protection	-	-
Zone Selective Interlocking	-	-
LCD, 4-line	-	-
LCD, graphic	-	-
Communication via	-	-
PROFIBUS DP	-	-
Measurement functions	-	
Selectable parameter sets	-	-
Parameters freely programmable		

ETU27B	ETU45B
\checkmark	\checkmark
\checkmark	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	
-	

ETU55B

ETU55B
\checkmark
\checkmark
\checkmark
\checkmark
\square
\square
-
-
\square
\square
\checkmark
\checkmark

ETU76B
\checkmark Standard

- Not available
- Optional

Air Circuit-Breakers (ACBs)

Introduction

I, II, III	11		1		II	
Circuit-breakers, approved acc. to UL 489, up to 5000 A, SENTRON WL	Non-automat for DC, up to SENTRON W	circuit-break 000 A,	Circuit-breakers, up to 3200 A, discontinued series Non-automatic circuit-breakers, up to 3200 A, discontinued series			
$\begin{aligned} & 1000,1600,2000,2500,3000 \\ & 4000,5000 \end{aligned}$	1000, 2000, 400		630, 800, 1000,	50, 1600	2000, 2500, 320	
3-pole	3 -pole, 4-pole		3-pole, 4-pole		3-pole, 4-pole	
up to $600 \mathrm{Y} / 347$	up to 1000		up to 690		up to 690	
65/100	$\begin{aligned} & 30 / 25 / 20 \\ & \text { (at DC 300/600/1000 V) } \end{aligned}$		65		80	
20000/15000/10000	15000		20000		20000	
	$\begin{array}{\|l\|l\|} \hline \text { IP55 } \\ \text { IP20 } \end{array}$		$\begin{array}{\|l} \text { IP54 } \\ \text { IP20 } \end{array}$		$\begin{array}{\|l\|l\|} \hline \text { IP54 } \\ \text { IP20 } \end{array}$	
For dimensions see circuit-breakers/ non-automatic circuit-breakers up to 6300 A, SENTRON WL	Fixed-mounted 460/590	Withdrawable 460/590	Fixed-mounted$300 / 390$470330	Withdrawable 280/370	Fixed-mounted$400 / 520$470330	Withdrawable 380/500
	434	465,5		485		485
	291	471		445		445

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

General data

Overview

SENTRON WL:
Superior individual products integrated into uniform power distribution systems - up to and including industry-specific industrial and infrastructure solutions

(1) Guide frame

(2) Main connection, front, flange, horizontal, vertical
(3) Position indicator switch
(4) Grounding contact, leading
(5) Shutter
(6) COM15 PROFIBUS module
(7) External CubicleBUS modules
(8) Closing solenoid, auxiliary release
(9) Auxiliary conductor plug-in system
(1) Auxiliary switch block
(1) Door sealing frame
(1) Interlocking set for baseplate
(B) Transparent panel, function insert
(4) EMERGENCY-STOP pushbutton, key operated
(15) Motorized operating mechanism
(16) Operating cycles counter
(1) Breaker status sensor (BSS)
(B) Electronic overcurrent trip unit (ETU)
(19) Reset solenoid
(2) Breaker data adapter (BDA)
(21) 4-line LCD module
(22) Ground-fault protection module
(23) Rating plug
(24) Measuring function module
(25) Circuit-breaker

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

Benefits

Low space requirements

The SENTRON WL devices require very little space. Size I devices (up to 1600 A) fit into a 400 mm wide switchgear panel. Size III devices (up to 6300 A) are the smallest of their kind and with their construction width of 704 mm fit into a 800 mm wide switchgear panel.

Modular design

Components like auxiliary releases, motorized operating mechanisms, overcurrent trip units, current sensors, auxiliary circuit signaling switches, automatic reset devices and interlocks can all be exchanged or retrofitted at a later stage, thus allowing the circuit-breaker to be adapted to new, changing requirements.
The main contact elements can all be replaced in order to increase the endurance of the circuit-breaker.

Retrofittable modules for electronic overcurrent trip units

Modularity is one of the main features of the new SENTRON WL circuit-breakers.
Special LCDs, ground-fault modules, rated current modules, and communication modules for the electronic overcurrent trip units are available for retrofitting.

Rating plugs

It is no longer necessary to replace the transformers in order to change the rated current. The rating plugs, which have been integrated into the electronic overcurrent trip units and are easily accessible, are exchanged instead. In this way, the circuitbreaker is quickly set to the new rated current and is also marked accordingly.

Communication

The use of modern communication-capable circuit-breakers opens up completely new possibilities in terms of start-up, calibration, diagnosis, testing, maintenance, and power management.
This allows many different ways of reducing costs and improving productivity in industrial plants, buildings and infrastructure projects to be achieved.

Area of application

- As incoming-feeder, distribution, tie, and outgoing-feeder cir-cuit-breakers in electrical installations.
- For switching and protecting motors, capacitors, generators, transformers, busbars and cables.
- Application as an EMERGENCY-STOP switch in conjunction with an EMERGENCY-STOP device (DIN VDE 0113, IEC 60 204-1).
Due to the reinforced use of electronic control systems, the demands made on air circuit-breakers in terms of operator control and monitoring of network processes have increased.
The extensive, coordinated SENTRON range of devices covers all applications between 16 A and 6300 A with compact and air circuit-breakers.
The AC devices are available as circuit-breakers and non-automatic circuit-breakers. DC devices are only available as non-automatic circuit-breakers.

Specifications

SENTRON WL circuit-breakers satisfy:

- IEC 60947-2
- DIN VDE 0660 Part 101
- climate-proof to DIN IEC 68 Part 30-2.

Also available with UL 489 .
For further specifications, see Annex.

Design

- Rated currents: 630 A to 6300 A
- 3 sizes for different rated current ranges (see illustration "Overview of SENTRON WL circuit-breakers/non-automatic circuitbreakers")
- 3 and 4-pole versions
- Rated operational voltage up to AC 690 V and 1000 V. Special versions up to AC 1000 V available
- 3 different switching capacity classes in the range from 50 kA to 100 kA for AC applications and one switching capacity class for DC applications.
The SENTRON WL circuit-breakers are supplied complete with operating mechanism (manual operating mechanism with mechanical closing), electronic overcurrent trip unit and auxiliary switches (2 NO contacts +2 NC contacts in the standard version), and can be equipped with auxiliary releases.

Installation types

Fixed-mounted or withdrawable version

Ambient temperatures

The SENTRON WL circuit-breakers are climate-proof in accordance with DIN IEC 68 Part 30-2. They are intended for use in enclosed areas where no severe operating conditions (e.g. dust, corrosive vapors, damaging gases) are present.
When installed in dusty and damp areas, suitable enclosures must be provided.

Coordinated dimensions

The dimensions of SENTRON WL circuit-breakers of the same installation type only differ in terms of the width of the device which depends on the number of poles and the frame size.

Due to the nature of the design, the dimensions of devices with a withdrawable design are determined by the dimensions of the guide frames, which are slightly larger.

Non-automatic circuit-breakers

One special type of circuit-breaker is utilized as a non-automatic circuit-breaker. The non-automatic circuit-breakers are designed without an electronic overcurrent trip unit system and do not perform any protection duties for the system.
One potential application is the use as a bus coupler in systems with parallel feed-ins.
The designs and specifications can be selected according to those of the circuit-breakers.

Operating mechanisms

The switches are available with various optional operating mechanisms:

- Manual operating mechanism with mechanical closing (standard design)
- Manual operating mechanism with mechanical and electrical closing
- Motorized operating mechanism with mechanical and electrical closing.
The operating mechanisms with electrical closing can be used for synchronization tasks.

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

General data

The dimension for the depth of the circuit-breaker is from the circuit-breaker rear to the inner surface of the closed switchgear door.

1) Size II, $I_{\text {cu }}=55 \mathrm{kA}$; deliverable for $I_{\mathrm{n} \text { max }}=2000 \mathrm{~A}$ and 2500 A

Overview of SENTRON WL circuit-breakers/non-automatic circuit-breakers

Main circuit connections

All circuit-breakers are equipped with horizontal main circuit connections on the rear for up to 5000 A as standard (horizontal connection to busbars).
Circuit-breakers with a max. rated current of 6300 A are equipped with vertical main circuit connections (for vertically installed busbars).
The following options are available:

- Accessible from the front, one hole (for vertically installed busbars)
- Accessible from the front, two holes (holes in accordance with DIN 43673) (for vertically installed busbars)
- At the rear, vertical (for vertically installed busbars)
- Connecting flange (for direct connection to guide frame up to 4000 A).

Auxiliary circuit connections

The type of connection for the auxiliary switches depends on the type of installation:

- Withdrawable version

The internal auxiliary switches are connected to the male connector on the switch side. When the breaker is fully inserted the blades make a connection with the slide module in the guide frame. Various adapters can then be used to complete the wiring (see illustration "Connection options for auxiliary circuit connections").

- Fixed-mounted version In this case the auxiliary circuit plugs are engaged directly onto the circuit-breaker. The connectors are equipped with coding pins that prevent them being mistakenly interchanged.

Connection options for auxiliary circuit connections

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

Operator panel

The operator panel is designed to protrude from a cutout in the door providing access to all operator controls and displays with the door closed.
The operator panels for all circuit-breakers (fixed-mounted/withdrawable designs, $3-/ 4$-pole) are identical. The operator panel ensures degree of protection IP20.

Safety and reliability

To protect the circuit-breakers and plant against unauthorized switching as well as the maintenance and operator personnel, the system contains many blocking devices. Others can be retrofitted.

Other safety features include:

- Incoming supply from above or below, as required
- Locking of the guide frame with the circuit-breaker removed, as standard
- Locking of the withdrawable circuit-breaker against movement, as standard
- High degree of protection with cover IP55
- Mechanical closing lockout after overload or short-circuit tripping as standard
- The circuit-breaker is always equipped with the required number of auxiliary supply connectors
- Devices with electronic overcurrent trip units from ETU45B and higher are always equipped with temperature sensors on BSS and COM15 module.

Standard version

SENTRON WL circuit-breakers are equipped with the following features as standard:

- Mechanical ON and OFF pushbutton
- Manual drive with mechanical request
- Switch position indication
- Ready-to-close indicator
- Memory status indicator
- Auxiliary switches (2 NO + 2 NC)
- Rear horizontal main circuit connections for fixed mounted and withdrawable versions up to 5000 A , and rear vertical main circuit connections for 6300 A applications
- For 4-pole circuit-breakers, the fourth pole (N) is installed on the left and is 100% loadable
- Contact erosion indicator for the main contacts
- Auxiliary circuit plug system with SIGUT screw-type terminals. Delivery inclusive of all auxiliary circuit connectors to internal specifications including coding device for the prevention of incorrect installation of fixed-mounted circuit-breakers
- Mechanical "tripped" indicator for electronic overcurrent trip unit system
- Mechanical closing lockout after tripping operation
- Control panel cannot be taken off with the switch in the ON position
- User manual on CD-ROM (for printed version see options)

Additional features of the withdrawable design:

- Main contacts:

Laminated receptacles in the guide frame, penetration blades on the withdrawable circuit-breaker

- Position indicator in the control panel of the withdrawable circuit-breaker
- Captive manual crank lever for moving the withdrawable circuit-breaker
- Guide frame with guide rails for easy moving of the withdrawable circuit-breaker
-The withdrawable circuit-breaker can be locked to prevent it being pushed out of position
- The withdrawable circuit-breaker cannot be moved when it is in the ON position
- Coding of the rated current between the guide frame and the withdrawable circuit-breaker.

Withdrawable short-circuit, ground, and bridging units

Portable positively-driven ground and short-circuit devices are used for the disconnected system sections to verify isolation from the supply at the workplace.
Withdrawable grounding units allow simple and comfortable grounding. They are simply inserted into the guide frames in place of the corresponding withdrawable circuit-breakers. This ensures that these devices are always first connected with the ground electrode and then with the components to be grounded.

The ground terminals are fitted to the side of the switch enclosure and establish the connection when inserted into the guide frame.

Short-time current of the ground terminal	$15 \mathrm{kA}(500 \mathrm{~ms})$
Rated operational voltage	1000 V
Specification	DIN VDE 0683

All withdrawable terminals are short-circuited and grounded on delivery.
Qualified electricians can easily convert it to a withdrawable bridging unit by following the enclosed instructions.
In addition, the withdrawable unit can be adapted to each rated current of a frame size.

Withdrawable short-circuit and grounding unit

The withdrawable short-circuit and grounding unit consists of a breaker enclosure with penetration blades which are connected with the short-circuiting link.

Depending on the version, the short-circuiting links are arranged at the top or bottom. The ground and short-circuit connections are established when the device is inserted.

It must be ensured that the side to be short-circuited and grounded is not live. For this reason it is recommended that the withdrawable unit is only wound in when the door is closed.

Withdrawable bridging unit

The withdrawable bridging unit consists of a breaker enclosure in which all disconnection components and the operating mechanism have been replaced with simple connections between the upper and lower contacts.

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

General data

Circuit-breaker

Guide frame

(1) Arc chute cover (option)
(2) Blow-out openings
(3) Opening for crane hook
(4) Shutter (option)
(5) Locking device (shutter) (option)
(6) Name plate for guide frame
(8) Ground terminal $\varnothing 14$ mm
(9) Locking device for racking rail
(10) Locking device against movement when cabinet door is open (option)
(11) Door interlock for guide frame (option)
(12) Racking rail
(B) Factory-set rated current coding
(14) Sliding contact for breaker grounding (option)
(15) Equipment-dependent coding (option)
(16) Shutter actuator (option)
(17) Position indication switch (option)
(18) Sliding contact module for auxiliary conductors (number depends on equipment)

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,
 SENTRON WL

Auxiliary releases

Up to two auxiliary releases can be installed at the same time. The following are available:

1 shunt release
or 1 undervoltage release
or 2 shunt releases
or 1 shunt release
+1 undervoltage release.

Shunt release

When the operating voltage is connected to the shunt release, the circuit-breaker is opened immediately. The shunt release is available in the variants 5% ON-time for overexcitation and
100% ON-time for permanent excitation. This means that it is also possible to block the circuit-breaker against being jogged into closing.
An energy storage device for shunt releases allows the circuitbreaker to be opened even if the control voltage is no longer available.

Undervoltage release

The undervoltage release causes the circuit-breaker to be opened if the operating voltage falls below a certain value or is not applied. The circuit-breaker cannot be opened manually or by means of an electrical ON command if the undervoltage release is not connected to the rated voltage. The undervoltage release has no delay as standard. A delay can be set by the customer in the range between $t_{\mathrm{d}}<80 \mathrm{~ms}$ and $t_{\mathrm{d}}<200 \mathrm{~ms}$.
In addition, an undervoltage release with a delay in the range from 0.2 to 3.2 s is available.

Alarm switch for auxiliary releases

One signal contact is used for each auxiliary release to determine the positions of the auxiliary releases.

Closing solenoid

The closing solenoid is used to close the circuit-breaker electrically by means of a local electrical ON command or by a remote unit.

Motorized operating mechanism

The operating mechanism is used to load the storage spring automatically.
The operating mechanism is activated if the storage spring has been unloaded and the control voltage is available.

It is switched off automatically after loading. This does not affect manual loading of the storage spring.

Indicators, signals, and operator controls

Motor STOP switch
Control switch for switching off the motorized operating mechanism (automatic loading).

Operating cycles counter

The motorized operating mechanism can be supplied with a 5 -digit operating cycles counter. The display is incremented by " 1 " as soon as the storage spring is fully loaded.
Resetting the manual "tripped" signal
When the circuit-breaker has tripped, this is indicated by the red protruding reset button on the ETU. When the reset button is activated, the tripping solenoid and tripped signal are reset. If this display is to be reset remotely, the reset button can be equipped with a reset solenoid.

This option allows the circuit-breaker to be reset both manually and electrically.

General data

Automatic resetting of closing lockout

When the ETU is activated, reclosing of the circuit-breaker is prevented until the trip unit is either electrically or manually reset. If the "Automatic resetting of closing lockout" option is used, the circuit-breaker is ready to close immediately after tripping. Resetting the manual "tripped" indicator is not included in this option.

Tripped signal switch

If the circuit-breaker has tripped due to an overload, short-circuit, ground fault or extended protection function, the tripped signal switch can indicate this. This signal switch is available as an option. If the circuit-breaker is used for communication, this option is supplied as standard.
Ready-to-close signal switch
The SENTRON WL circuit-breakers are equipped with an optical ready-to-close indicator as standard. In addition, the ready-toclose status can be transmitted by means of a signal switch as an option. If the switch is used for communication, the signal switch is supplied as standard.

Locking devices

Locking device in OFF position
This function prevents closing of the circuit-breaker and fulfills the specifications for main switches to EN 60204 (VDE 0113) disconnector unit. This lockout only affects this switch.
If the circuit-breaker is replaced, closing is no longer prevented unless the new circuit-breaker is also protected against unauthorized closing.
To activate the locking device, the circuit-breaker must be opened. The locking device is disabled when the circuit-breaker is closed. The lock is only activated when the key is removed. The safety key can only be removed in the OFF position.
Locking device for "electrical ON"
This prevents unauthorized electrical closing from the operator panel. Mechanical closing and remote closing remain possible. The lock is only activated when the key is removed.
Locking device for "mechanical ON"
This prevents unauthorized mechanical closing. The mechanical ON button can only be activated if the key is inserted (key operation). Closing with the "electrical ON" button and remote closing remain possible. The lock is only activated when the key is removed.
"Secure OFF", switch-independent locking device against unauthorized closing
This special switch-independent function for withdrawable cir-cuit-breakers prevents closing and fulfills the specifications for main switches to EN 60204 (VDE 0113) - disconnector unit. Unauthorized closing remains impossible even after the circuitbreaker has been exchanged.
To activate the lock, the circuit-breaker must be opened. The locking device is disabled when the circuit-breaker is closed. The lock is only activated when the key is removed. The safety key can only be removed in the OFF position.

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

General data

Locking device for manual crank

Prevents removal of the crank. The circuit-breaker is protected against movement. The lock is only activated when the key is removed.
Locking device for "mechanical OFF"
Prevents unauthorized mechanical opening from the operator panel. The mechanical OFF button can only be activated if the key is inserted (key operation). Remote opening remains possible. The lock is only activated when the key is removed.

Locking device for hand-operated lever

The hand-operated lever can be locked with a padlock. The storage spring cannot be loaded manually.
Locking device against resetting the "tripped" indicator
A lockable cover prevents manual resetting of the "tripped" indicator after overcurrent tripping. This locking device is supplied together with the transparent cover for electronic overcurrent trip units.

Sealing devices

Sealing cap for "electrical ON" button
The "electrical ON" button is equipped with a sealing cap as standard

Sealing cap for "mechanical ON and OFF" buttons

The locking set contains covering caps which can be sealed.
Sealing device for electronic overcurrent trip units
The transparent cover can be sealed. The configuration sections are covered to prevent unauthorized access. Openings allow access to the query and test button.

Blocking devices

Closing lockout when cabinet door is open
Ready-to-close is deactivated mechanically when the cabinet door is open. The circuit-breaker can neither be mechanically nor electrically closed. The blocking signal is transmitted by means of a Bowden wire.
Blocking device against movement for withdrawable circuitbreakers when the cabinet door is open.

The manual crank is blocked when the cabinet door is open and cannot be removed. The withdrawable circuit-breaker cannot be moved. The lock only affects the inserted manual crank.

Locking of the control cabinet door

The control cabinet door cannot be opened if

- the fixed-mounted circuit-breaker is closed (the blocking signal is transmitted via the Bowden wire) or
- if the withdrawable circuit-breaker is in the connected position.

Blocking mechanism via "mechanical ON and OFF" buttons
The "mechanical ON" and "OFF" buttons are covered with a cap which only allows activation with a tool. These covering caps are part of the locking set.

Additional equipment for guide frames

Shutters
The sealing strips of the shutter seal the laminated contacts of the guide frame when the withdrawable circuit-breaker is removed and therefore implement shock protection.
The sealing strips can be manually opened using the strip levers.

The position of the sealing strips can be locked in various positions using padlocks for securing against tampering.
Rated current coding unit between circuit-breaker and guide frame

Withdrawable circuit-breakers and guide frames are equipped with a rated current coding unit as standard.
This ensures that only circuit-breakers whose penetration blades are suited to the laminated contacts of the guide frame can be inserted into a guide frame (see diagram below).

(1) Guide frame, interior of I / h side; interior of r / h side similar
(2) Coding pin on racking rail in guide frame
(3) Racking rail
(4) Withdrawable circuit-breaker, r/h side; I/h side similar
(5) Coding pin on guide frame

Rated current coding unit between circuit-breaker and guide frame

Equipment-dependent coding

Withdrawable circuit-breakers and guide frames can be retrofitted with an equipment-dependent coding unit.

This allows different designs of circuit-breakers and guide frames to be uniquely assigned. If the circuit-breaker and guide frame have been assigned different codes, the circuit-breaker cannot be inserted.

36 different coding options can be selected.

Position indicator switch for guide frames

The guide frame can be retrofitted with position indicator switches. These can be used to determine the position of the cir-cuit-breaker in the guide frame.
The position indicator switches have factory-fitted 1.5 m long cables and are mounted on the supporting plate. Two versions are available (see table below).

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

General data

Positions of the withdrawable circuit-breaker in the guide frame

	Display	Position indicator	Main circuit	Auxiliary circuit	Control cabinet door	Shutter
Maintenance position			disconnected	disconnected	open	closed
Disconnected position	(3)		disconnected	disconnected	closed	closed
Test position			disconnected	connected	closed	closed
Connected position		Connect TEsT DScow NSE01040	connected	connected	closed	open

Mutual mechanical circuit-breaker interlocking

The module for mutual mechanical interlocking can be used for one or two SENTRON WL circuit-breakers and can be adapted easily to the corresponding versions. The fixed-mounted and withdrawable circuit-breaker versions are fully compatible and can therefore be used in a mixed configuration in an installation. This also applies to circuit-breakers 3WN6 and 3WN1.
The circuit-breakers can be mounted alongside each other or one above the other, whereby the spacing of the circuit-breakers is determined solely by the length of the Bowden cable. The Bowden cables are supplied in standard lengths of 2 m . Interlock signals are looped through via the Bowden cables. Interlocking is only effective in the connected position in the case of withdrawable circuit-breakers. The mechanical lifetime of the Bowden wires is 10,000 operating cycles.
Also see the following table for mutual mechanical interlocking of circuit-breakers.

Phase barriers

The plant engineering company can manufacture phase barriers made of insulating material for the arcing fault barriers. The rear panel of the fixed-mounted circuit-breakers or guide frames are equipped with guide grooves.

Arc chute cover

The arc chute cover is available as optional equipment for the guide frame (standard for versions in accordance with UL 489). The arc chute cover protects switchgear components which are located directly above the circuit-breaker.

Door sealing frame and cover

SENTRON WL circuit-breakers have degree of protection IP20 as standard. However, if the switchgear is to be equipped with a higher degree of protection, a door sealing frame with IP40 and a cover with IP55 are available.

Mutual mechanical interlocking of circuit-breakers - examples

Mutual interlocking of two circuit-breakers	Interlocking between three circuit-breakers	Mutual interlocking of three circuit-breakers	Interlocking of three circuit- breakers, two of them mutual

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

General data

Functions

Functions of the electronic overcurrent trip units

ETU15B

ETU25B

ETU27B

Basic protection functions

Overload protection L	\checkmark	\checkmark	\checkmark
Short-time delayed short-circuit protection S	-	\checkmark	\checkmark
Instantaneous short-circuit protection	\checkmark	\checkmark	\checkmark
Neutral conductor protection N	-	-	\checkmark
Ground-fault protection G	-	-	\checkmark
Additional functions			
N -conductor protection can be switched on/off	-	-	\checkmark
Short-time delayed short-circuit protection can be switched on/off	-	-	-
Non-delayed short-circuit protection can be switched on/off	-	-	-
Thermal image can be switched on/off	-	-	-
Load monitoring	-	-	-
Short-time delayed short-circuit protection can be switched to $I^{2} t$	-	-	-
Non-delayed short-circuit protection adjustable	\checkmark	-	-
Overload protection switchable to $I^{4} t$	-	-	-
Overload protection can be switched on/off	-	-	-
N -conductor protection adjustable	-	-	-
Selectable parameter sets	-	-	-

Selectable parameter sets

Configuration and displays

Configuration via rotary coding switches (10 steps)	$\boldsymbol{\checkmark}$	$\boldsymbol{\iota}$
Configuration via communication (absolute values)	-	-
Configuration via user interface of ETU (absolute values)	-	-
Configuration of expanded protection functions	-	-
LCD alphanumerical	-	-

LCD alphanumerical

Graphic LCD

Measurement function

Measurement function
Measurement function Plus

Communication

CubicleBUS

Communication via PROFIBUS DP

Communication via Ethernet

\checkmark Standard - Not available Optional

Detailed information about the functions of the electronic overcurrent trip units is given in the following.

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

| $\boldsymbol{\nu}$ | - | - |
| :---: | :---: | :---: | :---: |
| - | $\boldsymbol{\nu}$ | $\boldsymbol{\nu}$ |
| - | - | $\boldsymbol{\nu}$ |
| \square | \square | \square |
| \square | - | - |
| | - | \boldsymbol{V} |

\square	\square	\square
\square	\square	\square

$\boldsymbol{\nu}$	$\boldsymbol{\nu}$	$\boldsymbol{\nu}$
\square	\square	\square
\square	\square	\square

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

General data

Electronic overcurrent trip units (ETU)

The electronic overcurrent trip unit is controlled by a microprocessor and operates independently of an auxiliary voltage. It enables systems to be adapted to the different protection requirements of distribution systems, motors, transformers and generators.

Communication capability

The international standard PROFIBUS DP can be used to transmit data such as current values, switching states, reasons for tripping etc. to central computers.
Data acquisition and energy management are possible in conjunction with the measurement function.

A new internal circuit-breaker data bus allows switchboard panel communication between the circuit-breaker and secondary devices in the circuit-breaker panel:

- Actuation of analog displays
- Ability to test the communication build-up with circuit-breakers
- Display of release status and tripping reasons
- Input module for reading in further switchgear panel signals and for transmission of these signals to the PROFIBUS DP
- Various output modules for displaying measured values.

This means that it is not only possible to monitor the device remotely, but also to transmit current values from the entire system and perform switching operations remotely.

$I^{2} t$ and $I^{4} t$ characteristic for overload protection

The best protection for the whole switchgear is achieved by setting the tripping characteristic to an optimum value. In order to achieve optimal discrimination for upstream fuses or medium voltage protection systems, the inclination of the characteristic can be selected for the overload range.

The overload protection L (long time protection) for the electronic overcurrent trip units ETU45B, ETU55B, and ETU76B allows the characteristic to be switched between $I^{2} t$ and $I^{4} t$.
The $I^{4} t$ characteristic improves discrimination for downstream circuit-breakers and fuses.

Electronic overcurrent trip units ETU

Modularity has also been strictly emphasized during the development of the electronic overcurrent trip units. These are some of the modules which can be easily retrofitted at any time:

- Ground-fault protection modules
- Communication
- Measurement function
- Displays
- Rated current modules (rating plugs)

This allows quick adaptation to new local mains specifications. In addition, new innovative functions have been included in the ETUs.

Example of configuration for ETU45B

Rated current module / rating plug

The rated current module is an exchangeable module which allows the user to reduce the rated device current so as to adapt it optimally to the plant; e.g. if a new plant section is taken into operation. The rated current module must be selected to fit the rated current of the plant.

Selectable parameters

In the case of quick changes of power supply conditions, e.g. for switchovers from transformer to generator operation or if a section of the supply is shutdown when the shift changes, SENTRON WL allows the relevant protection parameters to be quickly adapted to the new conditions.
The ETUs contain two independent tripping characteristics (parameter sets). The switchover is completed within 200 ms and is performed with the help of an external signal.

ETU15B electronic overcurrent trip unit

ETU25B electronic overcurrent trip unit

Application:

Simple building and plant protection without time-selective grading up to 3200 A

Features:

- Adjustable overload protection with $I^{2} t$ characteristic with preset delay time $t_{R}=10$ seconds at $6 \times I_{R}$
- Non-delayed short-circuit protection adjustable in the range from 2 to $8 \times I_{n}$
- Overload display
- Protection function is set by means of the rotary coding switch

For technical details see table "Function overview of the electronic overcurrent trip unit system" under "Technical specifications".

Application:

Classical building, motor and plant protection with time-selective coordination for up to 6300 A

Features:

- Adjustable overload protection with $I^{2} t$ characteristic preset delay time $t_{R}=10$ seconds at $6 \times I_{R}$
- Short-time delayed short-circuit protection adjustable in the range from 1.25 to $12 \times I_{\mathrm{n}}$ and
- Non-delayed short-circuit pro-
tection preset to
$20 \times I_{\mathrm{n}} / \mathrm{max} .50 \mathrm{kA}$
- Can be adapted to the required plant currents through retrofittable rated current module to ensure overload protection in the range from 100 A to 6300 A .
- Overload display
- Indicates the reason for tripping by means of an LED
- Test option for the trip unit
- Protection functions are set by means of the rotary coding switch
For technical details see table "Function overview of the electronic overcurrent trip unit system" under "Technical specifications".

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

General data

ETU27B electronic overcurrent trip unit

ETU45B electronic overcurrent trip unit

Mechanical RESET
for reclosing lockout
Scroll up

Indicators:
Overcurrent release
activated

Overload alarm
COMMUNICATION
EXPANDED

Application:

Low-cost all-round system for intelligent buildings and all types of industrial applications -
"CubicleBUS integrated"

Features:

The same as ETU25B but also
including

- Adjustable time-lag class
for overload protection
- Selectable characteristic for overload and short-delayed short-circuit range (current discrimination) for more accurate discrimination adaptation to upstream fuses and protection devices
- Thermal image as restart protection for tripped motor outgoing feeders
- Reversible and adjustable neutral conductor protection
- Modular ground-fault module with alarm and tripping functions which can be set separately
- Communication interface, measurement function (Plus), optional connection of external modules or for retrofitting
- Extended protection functions possible with measurement function
- Optional high-contrast display with viewing angle adjustment option
- The protection functions can be set by means of a rotary coding switch or sliding-dolly switch
For technical details see table
"Function overview of the electronic overcurrent trip unit system" under "Technical specifications".

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

ETU55B electronic overcurrent trip unit

ETU76B electronic overcurrent trip unit

Application:

The trip unit for special safety requirements which can be set via exclusive external parameter access for generator and motor protection as well as industrial applications - "CubicleBUS integrated"

Features:

The same as ETU45B but also including

- Two protection parameter sets which can be stored separately in the trip unit (switchover is performed via external signal)
- With overload protection which can be deactivated for use in modern drive technology
- Adjustable delay of delayed short-circuit protection up to 4000 ms
- Neutral conductor protection adjustable up to $I_{N}=2 \times I_{n}$
- Setting of protection functions by means of Breaker Data Adapter (BDA) or via communication interface
For technical details see table "Function overview of the electronic overcurrent trip unit system"

Application:

The multi-talent with graphical display for system analysis "CubicleBUS integrated"

Features:

The same as ETU55B but also including

- Graphical display of all parameters and events/ curve trends
- Storage of events and causes for tripping for detailed fault analysis
- Graphics display with high contrast, backlit display, and sleep mode.
For technical details see table "Function overview of the electronic overcurrent trip unit system" under "Technical specifications".

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

General data

Ground-fault protection

Ground-fault releases "G" sense fault currents that flow to ground and that can cause fire in the plant. Multiple circuit-breakers connected in series can have their delay times adjusted so as to provide graduated discrimination.

When setting the parameters for the electronic overcurrent trip unit it is possible to choose between "alarm" and "trip" in the event that the set current value is exceeded. The reason for tripping is indicated by means of an LED when the query button is activated.

Modules

The electronic overcurrent trip unit versions ETU45B, ETU55B and ETU76B can be retrofitted with a ground-fault module. The electronic overcurrent trip unit ETU27B is fitted with this module as standard.

Two versions can be ordered:

- GFM AT: Alarm and tripping
- GFM A: Only alarm.

Ground-fault module GFM A 55B-76B

Ground-fault module GFM AT 55B-76B

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

Measurement method

Vectorial summation current formation
The N -conductor current and the three phase currents are measured directly.
The electronic overcurrent trip unit determines the ground-fault current by means of vectorial summation current formation for the three phase currents and the N -conductor current.

Direct measurement of the ground-fault current
A current transformer with the transformation ratio $1200 \mathrm{~A} / 1 \mathrm{~A}$ is used for measurement of the ground-fault current. The transformer can be installed directly in the grounded neutral point of a transformer.

Three-pole circuit-breakers, current transformers in the neutral conductor

Four-pole circuit-breakers, current transformers in the grounded neutral point of the transformer.

Four-pole circuit-breakers, current transformers in the grounded neutral point of the transformer.

It is also possible to use a summation current transformer.

[^1]
General data

Setting

How the module is set depends on the measurement method used (see above):

Measurement method 1: in position Sum I
Measurement method 2: in position G.
This setting can be implemented for the electronic overcurrent trip unit versions ETU55B and ETU76B with Menu/Comm.

Ground-fault protection with $I^{2} t$ characteristic

With the exception of the electronic overcurrent trip unit ETU27B, all versions of the ground-fault modules are supplied with an $I^{2} t$ characteristic which can be activated.

This characteristic reduces the thermal load of the PE conductor for ground faults with delayed tripping.

Selection criteria for SENTRON WL circuit-breakers

Basic criteria for selecting circuit-breakers are:

- Max. short-circuit current at mounting location of circuitbreaker $I_{\mathrm{k}}^{\mathrm{m} \text { max }}$.
This value determines the short-circuit breaking capacity or short-circuit current carrying capacity of the circuit-breaker.
- It is compared with the value $I_{\mathrm{Cu}}, I_{\mathrm{CS}}, I_{\mathrm{CW}}$ of the circuit-breaker and essentially determines the size of the circuit-breaker. See "Overview of SENTRON WL circuit-breakers/non-automatic circuit-breakers".
- Rated current I_{n} which is to flow through the branch circuit. This value must not be larger than the maximum rated current for the circuit-breaker.
The rated current for the SENTRON WL is set with the rating plug. See "Overview of SENTRON WL circuit-breakers/non-automatic circuit-breakers".
- Ambient temperature
for the circuit-breaker.
This is usually the temperature inside the switchgear cabinet.
- Version of the circuit-breaker
- Minimum short-circuit current, which flows through the switching device. The trip unit must still detect this value as a short-circuit and must respond by tripping.
Protection functions of the circuit-breaker.
These are determined by the selection of the corresponding electronic overcurrent trip unit. See table "Functions of the electronic overcurrent trip units" under "Functions".

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL
 General data

Technical specifications

Short-circuit breaking capacity

Size		I		II			III
Type		3WL11		3WL12			3WL13
Switching capacity class		N	S	N	S	H	H
up to AC 415 V							
$I_{\text {cu }}$	kA	50	65	55	80	100	100
$I_{\text {CS }}$	kA	50	65	55	80	100	100
$I_{\text {cm }}$	kA	105	143	121	176	220	220
up to AC 500 V							
$I_{\text {Cu }}$	kA	50	65	55	80	100	100
$I_{\text {CS }}$	kA	50	65	55	80	100	100
$\underline{I_{\text {cm }}}$	kA	105	143	121	176	220	220
up to AC 690 V							
$I_{\text {cu }}$	kA	42	50	50	75	85	85
$I_{\text {CS }}$	kA	42	50	50	75	85	85
$I_{\text {cm }}$	kA	88	105	105	165	187	187
up to AC 1000 V							
$I_{\text {cu }}$	kA	-	-	-	-	45	50
$I_{\text {CS }}$	kA	-	-	-	-	45	50
$\underline{I_{\text {cm }}}$	kA	-	-	-	-	95	105

Rated short-time withstand current $I_{\text {cw }}$ of circuit-breakers							
Size		1		II			III
Type		3WL11		3WL12			3WL13
Switching capacity class		N	S	N	S	H	H
0.5 s	kA	42	65	55	80	100	100
1 s	kA	42	50	55	65	80	100
2 s	kA	29.5	35	39	46	$\left.\left.65^{1}\right) / 70^{2}\right)$	80
3 s	kA	24	29	32	37	$\left.\left.50^{1}\right) / 65^{2}\right)$	65

Size		I		II			III
Type		3WL11		3WL12			3WL13
Switching capacity class		N	S	N	S	H	H
up to AC 500 V	kA	42	65	55	80	100	100
up to AC 690 V	kA	42	50	50	75	85	85

1) Size II with $I_{n \max } \leq 2500 \mathrm{~A}$.
2) Size II with $I_{\mathrm{n} \text { max }}=3200 \mathrm{~A}$.

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

1) Break-time on instantaneous short-circuit release with ETU15B $=85 \mathrm{~ms}$.
2) Make-time via activation solenoid for synchronization purposes (short-time excited) 50 ms .
3) Maintenance means: replace main contact elements and arc chutes (see Operator's Guide).

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

General data

1) Break-time on instantaneous short-circuit release with ETU15B $=85 \mathrm{~ms}$
2) Make-time via activation solenoid for synchronization purposes (short-time excited) 50 ms .

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

General data

Size					I ... III
Manual operating mechanism with mechanical closing					
Closing/ charging stored-energy feature	Max. force required to operate the hand lever Required number of strokes on the hand lever			N	$\begin{aligned} & \leq 230 \\ & 9 \end{aligned}$
Manual operating mechanism with mechanical and electrical closing					
Charging stored-energy feature					
Closing solenoid (CC)	Operating range				$0.85 \ldots 1.1 \times U_{S}$
	Extended operating range for battery operation		for DC $24 \mathrm{~V}, \mathrm{DC} 48 \mathrm{~V}$ DC 60 V, DC 110 V DC 220 V		$0.7 \ldots 1.26 \times U_{S}$
	Power input		AC/DC	VA/W	15/15
	Minimum command duration at U_{S} for the closing solenoid			ms	60
	Short-circuit protection				1 A TDz (time-lag)/1 A
	Smallest permissible DIAZED fuse (operational class gL)/ miniature circuit-breaker with C-characteristic				
Manual/motorized operating mechanism with mechanical and electrical closing					
Manual operating mechanism					For data see above.
Motor	Operating range				$0.85 \ldots 1.1 \times U_{S}$
	Extended coil voltage tolerance for battery operation		for DC $24 \mathrm{~V}, \mathrm{DC} 48 \mathrm{~V}$ DC 60 V, DC 110 V DC 220 V		$0.7 \ldots 1.26 \times U_{s}$
	Power input to motor		AC/DC	VA/W	110/110
	Time required to charge the stored-energy mechanism at $1 \times U_{\text {S }}$			s	≤ 10
Closing solenoid					For data see above.
For motor and closing solenoid	Short-circuit protection				$2 \mathrm{~A} \mathrm{TDz} \mathrm{(time-lag)/1} \mathrm{~A}$
	Motor and closing solenoid for the same rated control supply voltages				
	Smallest permissible DIAZED fuse (operational class gL)/ miniature circuit-breaker with C-characteristic (for different rated control supply voltages		$\begin{aligned} & \text { at } U_{S}=24-30 \mathrm{~V} \\ & \text { at } U_{S}=48-60 \mathrm{~V} \\ & \text { at } U_{S}=110-127 \mathrm{~V} \\ & \text { at } U_{S}=220-250 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 2 \mathrm{~A} \\ & 2 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 1 \mathrm{~A} \end{aligned}$
Electronic trip unit signals					
Measuring accuracy of the electronic trip unit					Protection functions to EN 60947; current indication $\leq 5 \%$; measurement functions base quantities $\leq 1 \%$; measurement functions derived quantities $\leq 4 \%$
Auxiliary releases					
$\begin{aligned} & \text { shunt release (ST) } \\ & \text { (F1, F2) } \end{aligned}$	For continuous command (100% ON-time), locks out on momentarycontact commands	Operating value	pickup		$>0.7 \times U_{\mathrm{s}}$ (circuit-breaker is tripped)
		Operating range			$0.85 \ldots 1.1 \times U_{\text {S }}$
		Extended operating range for battery operation	for DC $24 \mathrm{~V}, \mathrm{DC} 48 \mathrm{~V}$ DC 60 V, DC 110 V DC 220 V		$0.7 \ldots 1.26 \times U_{S}$
		Rated control supply voltage $U_{\text {S }}$	$\begin{aligned} & \text { AC } 50 / 60 \mathrm{~Hz} \\ & \text { DC } \end{aligned}$	V	$\begin{aligned} & 110 ; 230 \\ & 24 ; 30 ; 48 ; 60 ; 110 ; 220 \\ & \hline \end{aligned}$
		Power input	AC/DC	VA/W	15/15
		Minimum command duration at		ms	60
		Opening time of circuit-breaker at $U_{s}=100 \%$	AC/DC	ms	80
		Short-circuit protection Smallest permissible DIAZED fu miniature circuit-breaker with C-	ational class gL)/ ristic		1 A TDz (time-lag)/1 A
	With stored energy feature consisting of shunt release and capacitor storage device	Rated control supply voltage $U_{\text {S }}$	$\begin{aligned} & \text { AC } 50 / 60 \mathrm{~Hz} \\ & \text { DC } \end{aligned}$	V	$\begin{aligned} & \hline 110 ; 230 \\ & 110 ; 220 \end{aligned}$
		Operating range			$0.85 \ldots 1.1 \times U_{S}$
		Power input	AC/DC	VA/W	1/1
		Storage time at $U_{\mathrm{s}} /$ recharging tim			max. $5 \mathrm{~min} / \mathrm{min} .5 \mathrm{~s}$
		Opening time of circuit-breaker,	cuit protection		as with "for continuous command"

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

General data

Contact position-driven auxiliary switches (S1, S2, S3, S4, S7, S8)

Rated insulation voltage U_{i}			AC/DC V 500				
Rated operating voltage U_{e}			AC/DC V	500			
Switching capacity	$\begin{aligned} & \text { AC } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	Rated operating voltage U_{e} Rated operating current $I_{\mathrm{e}} / \mathrm{AC}-12$ $I_{\mathrm{e}} /$ AC-15	V	24 10 4		$\begin{gathered} \hline 380 / 400 \\ 10 \\ 2 \end{gathered}$	$\begin{array}{r} 500 \\ 10 \\ 2 \end{array}$
	DC	Rated operating voltage U_{e} Rated operating current $I_{\mathrm{e}} / \mathrm{DC}-12$ $I_{\mathrm{e}} / \mathrm{DC}$-13	V	24 10 8	48 8 4	$\begin{array}{r} 110 \\ 3.5 \\ 1.2 \end{array}$	220 1 0.4
Short-circuit protection	Largest permissible DIAZED fuse (operational class gL) Largest permissible miniature circuit-breaker with C-characteristic			$\begin{aligned} & 10 \mathrm{~A} \mathrm{TDz}, 10 \mathrm{ADz} \\ & 10 \mathrm{~A} \end{aligned}$			

1) 24 V and 30 V only with undervoltage release UVR (F3).

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

General data

Size			I ... III				
Ready-to-close signaling switch (S20) (to DIN VDE 0630)							
Switching capacity	AC	Rated operating voltage U_{e} Rated operating current I_{e}		V A	$\begin{array}{r} 110 \\ 0.14 \\ \hline \end{array}$	$\begin{gathered} 220 \\ 0.1 \end{gathered}$	
	DC	Rated operating voltage U_{e} Rated operating current I_{e}		V	$\begin{gathered} \hline 24 \\ 0.2 \end{gathered}$	$\begin{array}{r} 220 \\ \quad 0.1 \\ \hline \end{array}$	
Short-circuit protection	Largest permissible DIAZED fuse (operational class gL)				2 A	Dz (q	
"Tripped" switch	Signal duration after tripping			on req.			
Tripped signaling switch (S24) (to DIN VDE 0630)							
Switching capacity	AC	Rated operating voltage U_{e} Rated operating current $I_{\mathrm{e}} / \mathrm{AC}$-12		$\begin{array}{ll} \hline \text { V } 230 \\ \text { A } 6 \\ \hline \end{array}$			
	DC	Rated operating voltage U_{e} Rated operating current $I_{\mathrm{e}} / \mathrm{DC}$-12		V	$\begin{array}{r} 24 \\ 6 \\ \hline \end{array}$	$\begin{gathered} 110 \\ 0.4 \end{gathered}$	$\begin{gathered} 220 \\ 0.2 \end{gathered}$
Short-circuit protection	Largest permissible DIAZED fuse (operational class gL)				6 A	Dz (qu	
"Tripped" switch	Signal duration after tripping				until manual or electrical remote-controlled reset (option)		
Position indicator switch on guide frame							
Type of contact	Signal:	"Circuit-breaker in connected position" "Circuit-breaker in test position" "Circuit-breaker in disconnected position"			$\begin{aligned} & 3 \mathrm{~W} \\ & 2 \mathrm{~W} \\ & 1 \mathrm{~W} \end{aligned}$		
Rated insulation voltage U_{i}			$\begin{aligned} & \text { AC } 50 / 60 \mathrm{~Hz} \\ & \mathrm{DC} \end{aligned}$		$\begin{aligned} & 440 \\ & 1 \\ & \hline \end{aligned}$		
Rated operating voltage U_{e}				V	250		
Switching capacity	Rated operating current I_{e}	$\begin{aligned} & I_{\mathrm{e}} / \mathrm{AC}-12 \\ & I_{\mathrm{e}} / \mathrm{AC}-15 \\ & I_{\mathrm{e}} / \mathrm{DC}-12 \\ & I_{\mathrm{e}} / \mathrm{DC}-13 \\ & \hline \end{aligned}$			110/127 V 13 A, 220/230 V 13 A, 320/400 V 0.6 A 110/127 V 5 A, 220/230 V 4 A, 320/440 V 3 A $24 \mathrm{~V} 13 \mathrm{~A}, 30 \mathrm{~V} 10 \mathrm{~A}, 48 \mathrm{~V} 2.5 \mathrm{~A}$, 110 V 0.8 A, 220/250 V 0.6 A 24 V 3.0 A, 220/250 V 0.1 A		
Short-circuit protection	Largest permissible DIAZED fuse (operational class gL) Largest permissible miniature circuit-breaker with C-characteristic				$\begin{aligned} & 8 \mathrm{~A} \text { TDz (slow) } \\ & 8 \mathrm{~A} \mathrm{TDz} \text { (slow) } \end{aligned}$		

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

General data

Functional overview of the electronic trip unit system

Parameter sets swit

- Switchable between parameter sets A and

	Alphanumeric LCD (4-line)	-	-	-
	Graphical LCD (24 V, external power supply required)	-	-	-
Communication				
	CubicleBUS integrated	-	-	-
	Communication-capable via PROFIBUS DP	-	-	-
Measurement function				
	Measurement function-capable with meas. function/meas. function Plus	-	-	-
LED display				
	Electronic trip unit active	\checkmark	\checkmark	\checkmark
	Alarm	\checkmark	\checkmark	\checkmark
	ETU fault	\checkmark	\checkmark	\checkmark
	L-release	-	\checkmark	\checkmark
	S-release	-	\checkmark	\checkmark
	I-release	-	\checkmark	\checkmark
	N-release	-	-	\checkmark
	G-release	-	-	\checkmark
	G-alarm	-	-	-
	Release via extended protection function	-	-	-
	Communication	-	-	-

Signals from signaling switches with external CubicleBUS modules (Opto or relays)

		Temperature alarm		
		Phase unbalance		
		Instantaneous short-circuit release		
		Short-time delayed short-circuit release		
		Overload release		
		Neutral conductor release		
		Ground-fault protection release		
		Ground-fault alarm		
		Auxiliary relay		
		ETU fault		
Increment size for adjustment of menu/comm or comm				
From ... to	Increm	nt size	From ... to	Increment size
$0 . .1$	0.1		1000 ... 1600	50
1... 100	1		1600 ... 10000	100
$100 . . .500$	5		10000 ... max.	1000
500 ... 1000	10			

-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
	-

[^2]
Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

Protection functions	ETU45B:	ETU55B	ETU76B:
Configuration via	D \& S	K	M/K
Overload protection	\checkmark	\checkmark	\checkmark
Function can be switched on/off		\checkmark	\checkmark
Setting range $I_{\mathrm{R}}=I_{\mathrm{n}} \times \ldots$	$\begin{aligned} & 0.4-0.45-0.5-0.55-0.6- \\ & 0.65-0.7-0.8-0.9-1 \end{aligned}$	0.4 ... 1	0.4 ... 1
Switchable overload protection ($I^{2} t$ - or $I^{4} t$-dependent function)	\checkmark	\checkmark	\checkmark
Setting range for time-lag class t_{R} at $I^{2} t$	2-3-5-5.5-8-10-14-17-21-25-30 s	$2 \ldots 30 \mathrm{~s}$	$2 \ldots 30 \mathrm{~s}$
Setting range for time-lag class t_{R} at $I^{4} t$	1-2-3-4-5 s	$1 . . .5 \mathrm{~s}$	$1 . . .5 \mathrm{~s}$
Thermal image can be switched on/off	\checkmark	\checkmark	
Phase loss sensitivity	at $t_{\text {sd }}=20 \mathrm{~ms}$ (M)	\checkmark (on/off)	\checkmark (on/off)
Neutral conductor protection	\checkmark	\checkmark	\checkmark
Function can be switched on/off	\checkmark	\checkmark	\checkmark
N conductor setting range $I_{\mathrm{N}}=I_{\mathrm{n}} \times \ldots$	0.5 ... 1	$0.2 \ldots 2$	0.2 ... 2
Short-time delayed short-circuit protection	\checkmark	\checkmark	\checkmark
Function can be switched on/off	\checkmark	\checkmark	\checkmark
Setting range $I_{\text {sd }}=I_{\mathrm{n}} \times \ldots$	1.25-1.5-2-2.5-3-4-6-8-10-12	$1.25 I_{\mathrm{n}} \ldots 0.8 \times I_{\mathrm{cw}}$	$1.25 I_{\mathrm{n}} \ldots 0.8 \times I_{\text {cw }}$
Setting range for delay time $t_{\text {sd }}$	M-100-200-300-400 ms	M-80 ... 4000 ms	M-80 ... 4000 ms
Switchable short-time delayed short-circuit protection ($I^{2} t$-dependent function)	\checkmark	\checkmark	\checkmark
Setting range for delay time $t_{\text {sd }}$ at $I^{2} t$	$100-200-300-400 \mathrm{~ms}$	$100 \ldots 400 \mathrm{~ms}$	$100 \ldots 400 \mathrm{~ms}$
Zone Selective Interlocking function	by CubicleBUS module	by CubicleBUS module	by CubicleBUS module
Instantaneous short-circuit protection	\checkmark	\checkmark	\checkmark
Function can be switched on/off	\checkmark	\checkmark	\checkmark
Setting range $I_{\mathrm{i}}=I_{\mathrm{n}} \times$	1.5-2.2-3-4-6-8-10-12-0.8 $\times I_{\text {CS }}$	$1.5 \times I_{\mathrm{n}} \ldots 0.8 \times I_{\text {cs }}$	$1.5 \times I_{\text {n }} \ldots 0.8 \times I_{\text {cs }}$
Ground-fault protection	\square Module can be retrofitted	\square Module can be retrofitted	\square Module can be retrofitted
Tripping and alarm function	\checkmark		
Tripping function can be switched on/off	\checkmark	\checkmark	\checkmark
Alarm function can be switched on/off	-	\checkmark	\checkmark
Detection of the ground-fault current via summation current formation with internal or external neutral conductor transformer	\checkmark	\checkmark	\checkmark
Detection of ground-fault current via external transformer	\checkmark	\checkmark	
Setting range of the operating current I_{g} for release	A-B-C-D-E	A ... E	A ... E
Setting range of the operating current I_{g} for alarm	A-B-C-D-E	A ... E	A ... E
Setting range of the delay time $\mathrm{tg}^{\text {d }}$	$100-200-300-400-500 \mathrm{~ms}$	$100 . . .500 \mathrm{~ms}$	$100 . .500 \mathrm{~ms}$
Switchable ground-fault protection characteristic ($I^{2} t$-dependent function)	\checkmark	\checkmark	\checkmark
Setting range for delay time t_{g} at $I^{2} t$	100-200-300-400-500 ms	$100 \ldots 500 \mathrm{~ms}$	$100 \ldots 500 \mathrm{~ms}$
Parameter set switchover			
Switchable between parameter set A and B	-	\checkmark	\checkmark
LCD			
Alphanumeric LCD (4-line)	\square	-	-
Graphical LCD (24 V, external power supply required)	-	-	\checkmark
Communication			
CubicleBUS integrated	\checkmark	\checkmark	\checkmark
Communication-capable via PROFIBUS DP	\checkmark	\checkmark	\checkmark
Measurement function			
Measurement function-capable with meas. function/meas. function Plus	\checkmark	\checkmark	\checkmark
LED display			
Electronic trip unit active	\checkmark	\checkmark	\checkmark
Alarm	\checkmark	\checkmark	\checkmark
ETU fault	\checkmark	\checkmark	\checkmark
L-release	\checkmark	\checkmark	\checkmark
S-release	\checkmark	\checkmark	\checkmark
1-release	\checkmark	\checkmark	\checkmark
N -release	\checkmark	\checkmark	\checkmark
G-release	\checkmark (only with ground-fault prot. mod.)	\checkmark (only with ground-fault prot. mod.)	\checkmark (only with ground-fault prot. mod.)
G-alarm	\checkmark (only with ground-fault prot. mod.)	\checkmark (only with ground-fault prot. mod.)	\checkmark (only with ground-fault prot. mod.)
Release via extended protection functions	\checkmark	\checkmark	\checkmark
Communication	\checkmark	\checkmark	\checkmark
Signals from signaling switches with external CubicleBUS modules (optical or relays)			
Overload warning	\checkmark	\checkmark	\checkmark
Load shedding, load receiving	\checkmark	\checkmark	\checkmark
Leading signal overload release 200 ms	\checkmark	\checkmark	\checkmark
Temperature alarm	\checkmark	\checkmark	\checkmark
Phase unbalance	\checkmark	\checkmark	\checkmark
Instantaneous short-circuit release	\checkmark	\checkmark	\checkmark
Short-time delayed short-circuit release	\checkmark	\checkmark	\checkmark
Overload release	\checkmark	\checkmark	\checkmark
Neutral conductor release	\checkmark	\checkmark	\checkmark
Ground-fault protection release	\checkmark (only with ground-fault prot. mod.)	\checkmark (only with ground-fault prot. mod.)	\checkmark (only with ground-fault prot. mod.)
Ground-fault alarm	\checkmark (only with ground-fault prot. mod.)	\checkmark (only with ground-fault prot. mod.)	\checkmark (only with ground-fault prot. mod.)
Auxiliary relay	\checkmark	\checkmark	\checkmark
ETU fault	\checkmark	\checkmark	\checkmark

Setting range of the operating current I_{g}

	Size I and Size II	Size III
A	100 A	400 A
B	300 A	600 A
C	600 A	800 A
D	900 A	1000 A
E	1200 A	1200 A

Circuit－Breakers／Non－Automatic Circuit－Breakers up to 6300 A， SENTRON WL

3－pole，fixed－mounted design

Selection and ordering data

Size	Max．rated circuit－ breaker current $I_{\mathrm{n} \text { max．}}$ ．	$\begin{aligned} & \text { Rated current }{ }^{1} \text {) } \\ & I_{\mathrm{n}} \end{aligned}$	ECO switching capacity N ， $I_{\text {cu }} / 440 \mathrm{~V}$			PS＊	Weight per PU approx	Standard switching capacity S， $I_{\text {cu }} / 440 \mathrm{~V}$			PS＊	Weight per PU approx
					Order No． Order No．supplement see Page 5／36					Order No． Order No．supplement see Page 5／36		
	A	A	kA	DT			kg		DT			kg
Horizontal main circuit connection												
｜	630	630	50	B	3WL11 06－2ロロ32－．．．．	1 unit	43.000	65	B	3WL11 06－3口प32－．．．．	1 unit	43.000
।	800	800	50	B	3WL11 08－2ロロ32－．．．．	1 unit	43.000	65	B	3WL11 08－3口ロ32－．．．．	1 unit	43.000
।	1000	1000	50	B	3WL11 10－2ロロ32－．．．．	1 unit	43.000	65	B	3WL11 10－3口 ${ }^{\text {a }}$ 32－．．．．	1 unit	43.000
I	1250	1250	50	B	3WL11 12－2ロロ32－．．．．	1 unit	43.000	65	B	3WL11 12－3口ロ32－．．．．	1 unit	43.000
1	1600	1600	50	B	3WL11 16－2■口32－．．．．	1 unit	43.000	65	B	3WL11 16－3■■32－．．．．	1 unit	43.000
II	800	800	－		－			80	B	3WL12 08－3口ロ32－．．．．	1 unit	56.000
II	1000	1000	－		－			80	B	3WL12 10－3口ロ32－．．．．	1 unit	56.000
II	1250	1250	－		－			80	B	3WL12 12－3口ロ32－．．．．	1 unit	56.000
II	1600	1600	－		－			80	B	3WL12 16－3口ロ32－．．．．	1 unit	56.000
II	2000	2000	55	B	3WL12 20－2ロロ32－．．．．	1 unit	56.000	80	B	3WL12 20－3口ロ32－．．．．	1 unit	56.000
II	2500	2500	55	B	3WL12 25－2■ロ32－．．．．	1 unit	59.000	80	B	3WL12 25－3口ロ32－．．．．	1 unit	59.000
1	3200	3200	－		－			80	B	3WL12 32－3ロロ32－．．．．	1 unit	64.000
Vertical main circuit connection												
｜	630	630	50	B	3WL11 06－2ロロ31－．．．．	1 unit	43.000	65	B	3WL11 06－3口ロ31－．．．	1 unit	43.000
I	800	800	50	B	3WL11 08－2ロロ31－．．．．	1 unit	43.000	65	B	3WL11 08－3口ロ31－．．．．	1 unit	43.000
I	1000	1000	50	B	3WL11 10－2ם口31－．．．．	1 unit	43.000	65	B	3WL11 10－3口 ${ }^{\text {a }} 31-\ldots$.	1 unit	43.000
I	1250	1250	50	B	3WL11 12－2ם口31－．．．．	1 unit	43.000	65	B	3WL11 12－3口ロ31－．．．．	1 unit	43.000
1	1600	1600	50	B	3WL11 16－2口ロ31－．．．．	1 unit	43.000	65	B	3WL11 16－3口ロ31－．．．．	1 unit	43.000
II	800	800	－		－			80	B	3WL12 08－3口ロ31－．．．．	1 unit	56.000
11	1000	1000	－		－			80	B	3WL12 10－3口ロ31－．．．．	1 unit	56.000
II	1250	1250	－		－			80	B	3WL12 12－3口ロ31－．．．．	1 unit	56.000
11	1600	1600	5		－			80	B	3WL12 16－3口ロ31－．．．．	1 unit	56.000
II	2000	2000	55	B	3WL12 20－2ロロ31－．．．．	1 unit	56.000	80	B	3WL12 20－3ロロ31－．．．．	1 unit	56.000
II	2500	2500	55	B	3WL12 25－2ロロ31－．．．．	1 unit	59.000	80	B	3WL12 25－3口ロ31－．．．．	1 unit	59.000
11	3200	3200	－					80	B	3WL12 32－3ロロ31－．．．．	1 unit	64.000
Front main circuit connection，single hole												
।	630	630	50	B	3WL11 06－2ロロ33－．．．．	1 unit	43.000	65	B	3WL11 06－3口ロ33－．．．．	1 unit	43.000
I	800	800	50	B	3WL11 08－2ロロ33－．．．．	1 unit	43.000	65	B	3WL11 08－3口ロ33－．．．．	1 unit	43.000
I	1000	1000	50	B	3WL11 10－2ロロ33－．．．．	1 unit	43.000	65	B	3WL11 10－3ロロ33－．．．．	1 unit	43.000
I	1250	1250	50	B	3WL11 12－2ロロ33－．．．．	1 unit	43.000	65	B	3WL11 12－3口ロ33－．．．．	1 unit	43.000
1	1600	1600	50	B	3WL11 16－2■口33－．．．．	1 unit	43.000	65	B	3WL11 16－3ロロ33－．．．．	1 unit	43.000
11	800	800	－		－			80	B	3WL12 08－3口ロ33－．．．．	1 unit	56.000
11	1000	1000	－		－			80	B	3WL12 10－3口ロ33－．．．．	1 unit	56.000
11	1250	1250	－		－			80	B	3WL12 12－3ロロ33－．．．．	1 unit	56.000
11	1600	1600	－		－			80	B	3WL12 16－3口ロ33－．．．．	1 unit	56.000
II	2000	2000	55	B	3WL12 20－2ロロ33－．．．．	1 unit	56.000	80	B	3WL12 20－3口ロ33－．．．．	1 unit	56.000
11	2500	2500	55	B	3WL12 25－2ロロ33－．．．．	1 unit	59.000	80	B	3WL12 25－3ロロ33－．．．．	1 unit	59.000
11	3200	3200	－		－			80	B	3WL12 32－3ロロ33－．．．．	1 unit	64.000
Front main circuit connection，double hole												
।	630	630	50	B	3WL11 06－2ロロ34－．．．．	1 unit	43.000	65	B	3WL11 06－3口ロ34－．．．．	1 unit	43.000
｜	800	800	50	B	3WL11 08－2ロロ34－．．．．	1 unit	43.000	65	B	3WL11 08－3口ロ34－．．．．	1 unit	43.000
I	1000	1000	50	B	3WL11 10－2ロロ34－．．．．	1 unit	43.000	65	B	3WL11 10－3口ロ34－．．．．	1 unit	43.000
।	1250	1250	50	B	3WL11 12－2ロロ34－．．．．	1 unit	43.000	65	B	3WL11 12－3口 ${ }^{\text {a }} 34-$－．．．	1 unit	43.000
1	1600	1600	50	B	3WL11 16－2ロロ34－．．．．	1 unit	43.000	65	B	3WL11 16－3口ロ34－．．．．	1 unit	43.000
II	800	800	－		－			80	B	3WL12 08－3口ロ34－．．．．	1 unit	56.000
11	1000	1000	－		－			80	B	3WL12 10－3口ロ34－．．．．	1 unit	56.000
11	1250	1250	－		－			80	B	3WL12 12－3口ロ34－．．．．	1 unit	56.000
11	1600	1600	－		－			80	B	3WL12 16－3口ロ34－．．．．	1 unit	56.000
II	2000	2000	55	B	3WL12 20－2ロロ34－．．．．	1 unit	56.000	80	B	3WL12 20－3口ロ34－．．．．	1 unit	56.000
11	2500	2500	55	B	3WL12 25－2ロロ34－．．．．	1 unit	59.000	80	B	3WL12 25－3口ロ34－．．．．	1 unit	59.000
11	3200	3200	－		－			80	B	3WL12 32－3ロロ34－．．．．	1 unit	64.000
Non－automatic circuit－breakers ${ }^{2}$ ）					Order No．supplements					Order No．supplements		

without electronic trip unit
without electronic trip unit，communication／ measurement function optional ${ }^{3}$ ）\square

Electronic trip units

Design without ground－fault protection

ETU15B：protection functions LI
ETU25B：protection functions LSI
ETU45B：protection functions LSIN^{4} ）
ETU45B：protection functions $\operatorname{LSIN}{ }^{4}$ ）with 4 －line display
ETU55B：protection functions $\operatorname{LSIN}{ }^{4}$ ）
ETU76B：prot．functions LSIN ${ }^{4}$ ）with pixel graphics display

Design with ground－fault protection

ETU27B：protection functions LSING 4 ）
ETU45B：protection functions $\left.\operatorname{LSING}{ }^{4}\right)^{6}$ ）
ETU45B：protection functions LSING 4 ）with 4 －line display ${ }^{6}$ ） ETU55B：protection functions $\left.\operatorname{LSING}{ }^{4}\right)^{6}$ ）
ETU76B：prot．functions LSING 4 ）w．pixel graphic display ${ }^{6}$ ）
$A A$
$A B$

Standard Order No．supplements（for further Order No．supplements see Page 5／36）
Manual operating mechanism with mechanical closing
Without $1^{\text {st }}$ and $2^{\text {nd }}$ aux．releases；aux．sw． 2 NC +2 NO
For footnotes see Page 5／29．

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

SENTRON WL
3-pole, fixed-mounted design

Standard Order No. supplements (for further Order No. supplements see Page 5/36)
Manual operating mechanism with mechanical closing
Without $1^{\text {st }}$ and $2^{\text {nd }}$ auxiliary releases; auxiliary switch $2 \mathrm{NC}+2$ NO

Footnotes for pages 5/28 and 5/29:

1) Rated current determined by rated current module. On the standard design the supplied module is equal to the max. circuitbreaker rated current.
If a lower rated current is required, adaptation by order code on page $5 / 37$.
2) Permissible short-time current rating I_{CC} and rated short-circuit making capacity I_{cm} for non-automatic circuit-breakers - see Page 5/20.
3) Required accessories "PROFIBUS communication setup" or "Measurement function Plus": Order No. with "-Z" and order code "F02" or "F05" respectively, see Page 5/38
4) Current transformers for vectorial summation current formation or for protection of the neutral conductor and current transformers for detection of the ground-fault current in the grounded star point of the transformer must be ordered separately, see Page 5/46.
5) Size III circuit-breakers are not available with electronic trip unit design ETU15B.
6) ETU45B to ETU76B with ground-fault protection module GFM AT (alarm and tripping), see Page 5/46.

- Start of delivery on request

Circuit－Breakers／Non－Automatic Circuit－Breakers up to 6300 A， SENTRON WL

3－pole，withdrawable design

Size	Max．rated circuit－breaker current I_{n} max．	Ratedcurrent ${ }^{1}$ ） I_{n}	ECO switching capacity N ， $I_{\text {cu }} / 440 \mathrm{~V}$			PS＊	Weight per PU approx．	Standard switching capacity S， $I_{\text {cu }} / 440 \mathrm{~V}$			PS＊	Weight per PU approx．
					Order No． Order No．supplement see Page 5／36					Order No． Order No．supplement see Page $5 / 36$		
	A	A	kA	DT			kg	kA	DT			kg
Without guide frame（for guide frames see Page 5／45）												
I	630	630	50	B	3WL11 06－2口ᄆ35－．．．．	1 unit	45.000	65	B	3WL11 06－3ロロ35－．．．．	1 unit	45.000
।	800	800	50	B	3WL11 08－2ロロ35－．．．．	1 unit	45.000	65	B	3WL11 08－3口ロ35－．．．．	1 unit	45.000
I	1000	1000	50	B	3WL11 10－2ロロ35－．．．．	1 unit	45.000	65	B	3WL11 10－3ロロ35－．．．．	1 unit	45.000
I	1250	1250	50	B	3WL11 12－2口ロ35－．．．．	1 unit	45.000	65	B	3WL11 12－3口ロ35－．．．．	1 unit	45.000
1	1600	1600	50	B	3WL11 16－2ロロ35－．．．．	1 unit	45.000	65	B	3WL11 16－3口ロ35－．．．．	1 unit	45.000
11	800	800	－		－			80	B	3WL12 08－3口ロ35－．．．．	1 unit	60.000
II	1000	1000	－		－			80	B	3WL12 10－3ロロ35－．．．．	1 unit	60.000
11	1250	1250	－		－			80	B	3WL12 12－3ロロ35－．．．．	1 unit	60.000
11	1600	1600	－		－			80	B	3WL12 16－3口ロ35－．．．．	1 unit	60.000
11	2000	2000	55	B	3WL12 20－2ロロ35－．．．．	1 unit	60.000	80	B	3WL12 20－3ロロ35－．．．．	1 unit	60.000
11	2500	2500	55	B	3WL12 25－2ロロ35－．．．．	1 unit	63.000	80	B	3WL12 25－3口ロ35－．．．．	1 unit	63.000
11	3200	3200	－		－			80	B	3WL12 32－3ロロ35－．．．．	1 unit	68.000
With guide frame，horizontal main circuit connection												
I	630	630	50	B	3WL11 06－2ロロ36－．．．．	1 unit	70.000	65	B	3WL11 06－3ロロ36－．．．．	1 unit	70.000
1	800	800	50	B	3WL11 08－2ロロ36－．．．．	1 unit	70.000	65	B	3WL11 08－3口ロ36－．．．．	1 unit	70.000
I	1000	1000	50	B	3WL11 10－2ロロ36－．．．．	1 unit	70.000	65	B	3WL11 10－3ロロ36－．．．．	1 unit	70.000
1	1250	1250	50	B	3WL11 12－2ロロ36－．．．．	1 unit	70.000	65	B	3WL11 12－3ロロ36－．．．．	1 unit	70.000
I	1600	1600	50	B	3WL11 16－2ロロ36－．．．．	1 unit	70.000	65	B	3WL11 16－3ロロ36－．．．．	1 unit	70.000
II	800	800	－		－			80	B	3WL12 08－3口ロ36－．．．．	1 unit	91.000
11	1000	1000	－		－			80	B	3WL12 10－3ロロ36－．．．．	1 unit	91.000
II	1250	1250	－		－			80	B	3WL12 12－3口ロ36－．．．．	1 unit	91.000
1	1600	1600	－		－			80	B	3WL12 16－3口ロ36－．．．．	1 unit	91.000
II	2000	2000	55	B	3WL12 20－2ロロ36－．．．．	1 unit	91.000	80	B	3WL12 20－3ロロ36－．．．．	1 unit	91.000
1	2500	2500	55	B	3WL12 25－2ロロ36－．．．	1 unit	102.000	80	B	3WL12 25－3ロロ36－．．．．	1 unit	102.000
11	3200	3200	－		－			80	B	3WL12 32－3ロロ36－．．．．	1 unit	113.000
With guide frame，vertical main circuit connection												
I	630	630	50	B	3WL11 06－2ロロ37－．．．．	1 unit	70.000	65	B	3WL11 06－3ロロ37－．．．．	1 unit	70.000
I	800	800	50	B	3WL11 08－2ロロ37－．．．．	1 unit	70.000	65	B	3WL11 08－3口ロ37－．．．．	1 unit	70.000
I	1000	1000	50	B	3WL11 10－2ロロ37－．．．．	1 unit	70.000	65	B	3WL11 10－3口ロ37－．．．．	1 unit	70.000
1	1250	1250	50	B	3WL11 12－2口ロ37－．．．．	1 unit	70.000	65	B	3WL11 12－3ロロ37－．．．．	1 unit	70.000
1	1600	1600	50	B	3WL11 16－2口ロ37－．．．	1 unit	70.000	65	B	3WL11 16－3口ロ37－．．．．	1 unit	70.000
11	800	800	－		－			80	B	3WL12 08－3口ロ37－．．．．	1 unit	91.000
1	1000	1000	－		－			80	B	3WL12 10－3口ロ37－．．．．	1 unit	91.000
11	1250	1250	－		－			80	B	3WL12 12－3口ロ37－．．．．	1 unit	91.000
II	1600	1600	－		－			80	B	3WL12 16－3口ロ37－．．．．	1 unit	91.000
II	2000	2000	55	B	3WL12 20－2ロロ37－．．．．	1 unit	91.000	80	B	3WL12 20－3ロロ37－．．．．	1 unit	91.000
II	2500	2500	55	B	3WL12 25－2ロロ37－．．．．	1 unit	102.000	80	B	3WL12 25－3口ロ37－．．．．	1 unit	102.000
11	3200	3200	－		－			80	B	3WL12 32－3口ロ37－．．．．	1 unit	113.000
With guide frame，connecting flange												
，	630	630	50	B	3WL11 06－2ロロ38－．．．．	1 unit	70.000	65	B	3WL11 06－3ロロ38－．．．．	1 unit	70.000
1	800	800	50	B	3WL11 08－2口ロ38－．．．．	1 unit	70.000	65	B	3WL11 08－3口ロ38－．．．．	1 unit	70.000
1	1000	1000	50	B	3WL11 10－2ロロ38－．．．．	1 unit	70.000	65	B	3WL11 10－3ロロ38－．．．．	1 unit	70.000
I	1250	1250	50	B	3WL11 12－2ロロ38－．．．．	1 unit	70.000	65	B	3WL11 12－3ロロ38－．．．．	1 unit	70.000
1	1600	1600	50	B	3WL11 16－2ロロ38－．．．	1 unit	70.000	65	B	3WL11 16－3口ロ38－．．．．	1 unit	70.000
11	800	800	－		－			80	B	3WL12 08－3口ロ38－．．．．	1 unit	91.000
11	1000	1000	－		－			80	B	3WL12 10－3口ロ38－．．．．	1 unit	91.000
II	1250	1250	－		－			80	B	3WL12 12－3ロロ38－．．．．	1 unit	91.000
II	1600	1600	5		－ 12 20－2			80	B	3WL12 16－3口ロ38－．．．．	1 unit	91.000
II	2000	2000	55	B	3WL12 20－2ロロ38－．．．．	1 unit	91.000	80	B	3WL12 20－3ロロ38－．．．．	1 unit	91.000
II	2500	2500	55	B	3WL12 25－2口ロ38－．．．	1 unit	102.000	80	B	3WL12 25－3口ロ38－．．．．	1 unit	102.000
II	3200	3200	－		－			80	B	3WL12 32－3ロロ38－．．．．	1 unit	113.000

Non－automatic circuit－breakers ${ }^{2}$ ）
Order No．supplements
Order No．supplements
without electronic trip unit
without electronic trip unit，communication／
measurement function optional ${ }^{3}$ ）\square

Electronic trip units

Design without ground－fault protection
ETU15B：protection functions LI
ETU25B：protection functions LSI
ETU45B：protection functions $\operatorname{LSIN}{ }^{4}$ ）
ETU45B：protection functions LSIN ${ }^{4}$ ）with 4 －line display
ETU55B：protection functions LSIN ${ }^{4}$ ）
ETU76B：prot．func． LSIN^{4} ）with pixel graphics display
Design with ground－fault protection
ETU27B：protection functions $\operatorname{LSING}{ }^{4}$ ）
ETU45B：protection functions LSING $\left.^{4}\right)^{6}$ ）
ETU45B：prot．functions $\operatorname{LSING}{ }^{4}$ ）with 4 －line display ${ }^{6}$ ）
ETU55B：protection functions $\operatorname{LSING})^{6}$ ）
ETU76B：prot．func． LSING 4 ）w．pixel graphics display ${ }^{6}$ ）

AA	AA
AB	AB
BB	
CB	BB
EB	CB
FB	EB
JB	FB
NB	JB
	NB
DG	
EG	DG
FG	EG
JG	FG
NG	JG

Standard Order No．supplements（for further Order No．supplements for circuit－breakers and guide frames，see Page 5／36）
Manual operating mechanism with mechanical closing
Without $1^{\text {st }}$ and $2^{\text {nd }}$ auxiliary releases；auxiliary switch $2 \mathrm{NC}+2 \mathrm{NO}$
For footnotes see Page 5／31

Circuit－Breakers／Non－Automatic Circuit－Breakers up to 6300 A，

3－pole，withdrawable design

Size	Max．rated circuit－breaker current $I_{\mathrm{n} \text { max．}}$ ． A	Rated current ${ }^{1}$ ） I_{n} A	High switching capacity $\mathrm{H}, \mathrm{I}_{\text {cu }} / 440 \mathrm{~V}$			PS＊	Weight per PU approx．
					Order No． Order No．supplements see Page 5／36		
			kA	DT			kg
Without guide frame（for guide frames see Page 5／45）							
11	800	800	100	B	3WL12 08－4ロロ35－．．．．	1 unit	60.000
11	1000	1000	100	B	3WL12 10－4ロロ35－．．．．	1 unit	60.000
II	1250	1250	100	B	3WL12 12－4ロロ35－．．．．	1 unit	60.000
II	1600	1600	100	B	3WL12 16－4ロロ35－．．．．	1 unit	60.000
II	2000	2000	100	B	3WL12 20－4ロロ35－．．．．	1 unit	60.000
11	2500	2500	100	B	3WL12 25－4ロロ35－．．．．	1 unit	63.000
11	3200	3200	100	B	3WL12 32－4■ロ35－．．．．	1 unit	68.000
$1115{ }^{5}$ ）	4000	4000	100	C	3WL13 40－4ロロ35－．．．．	1 unit	88.000
${ }_{1115}^{5}$ ）	5000	5000	100	C	3WL13 50－4ロロ35－．．．．	1 unit	88.000
$111{ }^{5}$ ）	6300	6300	100	C	3WL13 63－4■ロ35－．．．．	1 unit	96.000
With guide frame，horizontal main circuit connection							
11	800	800	100	B	3WL12 08－4ロロ36－．．．．	1 unit	91.000
11	1000	1000	100	B	3WL12 10－4ロロ36－．．．．	1 unit	91.000
11	1250	1250	100	B	3WL12 12－4ロロ36－．．．．	1 unit	91.000
II	1600	1600	100	B	3WL12 16－4ロロ36－．．．．	1 unit	91.000
II	2000	2000	100	B	3WL12 20－4ロロ36－．．．．	1 unit	91.000
11	2500	2500	100	B	3WL12 25－4ロロ36－．．．．	1 unit	102.000
11	3200	3200	100	B	3WL12 32－4ロロ36－．．．．	1 unit	113.000
$111{ }^{5}$ ）	4000	4000	100	C	3WL13 40－4ロロ36－．．．．	1 unit	148.000
$1115)$	5000	5000	100	C	3WL13 50－4ロロ36－．．．．	1 unit	148.000
With guide frame，vertical main circuit connection							
II	800	800	100	B	3WL12 08－4ロロ37－．．．．	1 unit	91.000
11	1000	1000	100	B	3WL12 10－4ロロ37－．．．．	1 unit	91.000
11	1250	1250	100	B	3WL12 12－4ロロ37－．．．．	1 unit	91.000
11	1600	1600	100	B	3WL12 16－4ロロ37－．．．．	1 unit	91.000
11	2000	2000	100	B	3WL12 20－4ロロ37－．．．．	1 unit	91.000
11	2500	2500	100	B	3WL12 25－4ロロ37－．．．．	1 unit	102.000
11	3200	3200	100	B	3WL12 32－4ロロ37－．．．．	1 unit	113.000
	4000	4000	100	C	3WL13 40－4ロロ37－．．．．	1 unit	148.000
$\left.111^{5}\right)$	5000	5000	100	C	3WL13 50－4ロロ37－．．．．	1 unit	148.000
$111{ }^{5}$ ）	6300	6300	100	C	3WL13 63－4ロロ37－．．．．	1 unit	166.000
With guide frame，connecting flange							
11	800	800	100	B	3WL12 08－4ロロ38－．．．．	1 unit	91.000
11	1000	1000	100	B	3WL12 10－4ロロ38－．．．．	1 unit	91.000
11	1250	1250	100	B	3WL12 12－4ロロ38－．．．．	1 unit	91.000
11	1600	1600	100	B	3WL12 16－4ロロ38－．．．．	1 unit	91.000
11	2000	2000	100	B	3WL12 20－4ロロ38－．．．．	1 unit	91.000
11	2500	2500	100	B	3WL12 25－4ロロ38－．．．．	1 unit	102.000
11	3200	3200	100	B	3WL12 32－4ロロ38－．．．．	1 unit	113.000
$111{ }^{5}$ ）	4000	4000	100	C	3WL13 40－4ロロ38－．．．．	1 unit	148.000

Non－automatic circuit－breakers ${ }^{2}$ ）

without electronic trip unit
without electronic trip unit，communication／measurement function optional ${ }^{3}$ ）

Electronic trip units

Design without ground－fault protection

ETU15B：protection functions LI ${ }^{5}$ ）
ETU25B：protection functions LSI
ETU45B：protection functions LSIN ${ }^{4}$ ）
ETU45B：protection functions LSIN^{4} ）with 4－line display
ETU55B：protection functions LSIN 4 ）
ETU76B：protection functions LSIN^{4} ）with pixel graphics display

Design with ground－fault protection

TU27B：protection functions LSING 4
ETU45B：protection functions $\left.\operatorname{LSING}{ }^{4}\right)^{6}$ ）
ETU45B：protection functions LSING ${ }^{4}$ ）with 4 －line display ${ }^{6}$ ）
ETU55B：protection functions $\left.\operatorname{LS} \mathrm{ING}^{4}\right)^{6}$ ）
ETU76B：protection functions LSING ${ }^{4}$ ）with pixel graphics display ${ }^{6}$ ）

Standard Order No．supplements（for further Order No．supplements for circuit－breakers and guide frames，see Page 5／36）
Manual operating mechanism with mechanical closing
Without $1^{\text {st }}$ and $2^{\text {nd }}$ auxiliary releases；auxiliary switch $2 \mathrm{NC}+2 \mathrm{NO}$

Footnotes for pages $5 / 30$ and 5／31：

1）Rated current determined by rated current module On the standard design the supplied module is equal to the max．rated type current．
If a lower rated current is required，adaptation by order code on page $5 / 37$ ．
2）Permissible short－time current rating I_{CC} and rated short－circuit making capacity I_{cm} for non－automatic circuit－breakers－see Page 5／20
3）Required accessories＂PROFIBUS communication setup＂and＂Measure－ ment function Plus＂：Order No．with＂－Z＂and order code＂F02＂and＂F05＂ respectively，see Page 5／38．

4）Current transformers for vectorial summation current formation or for pro－ tection of the neutral conductor and current transformers for detection of the ground－fault current in the grounded star point of the transformer must be ordered separately，see Page 5／46．

5）Size III circuit－breakers are not available with electronic trip unit design ETU15B．
6）ETU45B to ETU76B with ground－fault protection module GFM AT（alarm and tripping），see Page 5／46．
\square Start of delivery on request

Circuit－Breakers／Non－Automatic Circuit－Breakers up to 6300 A， SENTRON WL

4－pole，fixed－mounted design

Size	Max．rated circuit breaker current I_{n} max．	$\begin{aligned} & \text { Rated current }{ }^{1} \text {) } \\ & I_{\mathrm{n}} \end{aligned}$	ECO switching capacity N ， $I_{\text {cu }} / 440 \mathrm{~V}$			PS＊	Weight per PU approx．	Standard switching capacity S， $I_{\text {cu }} / 440 \mathrm{~V}$			PS＊	Weight per PU approx
					Order No． Order No．supplements see Page 5／36					Order No． Order No．supplements see Page 5／36		
	A	A		DT			kg	kA	DT			kg
Horizontal main circuit connection												
I	630	630	50	B	3WL11 06－2ロロ42－．．．．	1 unit	50.000	65	B	3WL11 06－3口ロ42－．．．．	1 unit	50.000
I	800	800	50	B	3WL11 08－2口ロ42－．．．．	1 unit	50.000	65	B	3WL11 08－3口ロ42－．．．．	1 unit	50.000
I	1000	1000	50	B	3WL11 10－2ロロ42－．．．．	1 unit	50.000	65	B	3WL11 10－3口ロ42－．．．．	1 unit	50.000
I	1250	1250	50	B	3WL11 12－2ロロ42－．．．．	1 unit	50.000	65	B	3WL11 12－3口ロ42－．．．．	1 unit	50.000
।	1600	1600	50	B	3WL11 16－2口ロ42－．．．．	1 unit	50.000	65	B	3WL11 16－3口ロ42－．．．．	1 unit	50.000
11	800	800	－		－			80	B	3WL12 08－3口प42－．．．．	1 unit	67.000
11	1000	1000	－		－			80	B	3WL12 10－3口ロ42－．．．．	1 unit	67.000
11	1250	1250	－		－			80	B	3WL12 12－3口प42－．．．．	1 unit	67.000
1	1600	1600	－		－			80	B	3WL12 16－3口ロ42－．．．．	1 unit	67.000
11	2000	2000	55	B	3WL12 20－2ロロ42－．．．．	1 unit	67.000	80	B	3WL12 20－3口ロ42－．．．．	1 unit	67.000
1	2500	2500	55	B	3WL12 25－2口ロ42－．．．．	1 unit	71.000	80	B	3WL12 25－3口ロ42－．．．．	1 unit	71.000
11	3200	3200	－		－			80	B	3WL12 32－3口ロ42－．．．．	1 unit	77.000
Vertical main circuit connection												
I	630	630	50	B	3WL11 06－2ロロ41－．．．．	1 unit	50.000	65	B	3WL11 06－3口	1 unit	50.000
I	800	800	50	B	3WL11 08－2ロロ41－．．．．	1 unit	50.000	65	B	3WL11 08－3口ロ41－．．．．	1 unit	50.000
I	1000	1000	50	B	3WL11 10－2ロロ41－．．．．	1 unit	50.000	65	B	3WL11 10－3口ロ41－．．．．	1 unit	50.000
I	1250	1250	50	B	3WL11 12－2ロロ41－．．．	1 unit	50.000	65	B	3WL11 12－3口ロ41－．．．．	1 unit	50.000
।	1600	1600	50	B	3WL11 16－2ロロ41－．．．．	1 unit	50.000	65	B	3WL11 16－3口ロ41－．．．．	1 unit	50.000
11	800	800	－		－			80	B	3WL12 08－3口प41－．．．．	1 unit	75.000
11	1000	1000	－		－			80	B	3WL12 10－3口ロ41－．．．．	1 unit	75.000
11	1250	1250	－		－			80	B	3WL12 12－3口ロ41－．．．．	1 unit	75.000
1	1600	1600	－		－			80	B	3WL12 16－3口ロ41－．．．．	1 unit	75.000
1	2000	2000	55	B	3WL12 20－2ロロ41－．．．．	1 unit	75.000	80	B	3WL12 20－3口ロ41－．．．．	1 unit	75.000
1	2500	2500	55	B	3WL12 25－2口ロ41－．．．．	1 unit	71.000	80	B	3WL12 25－3口ロ41－．．．．	1 unit	71.000
11	3200	3200	－		－			80	B	3WL12 32－3口ロ41－．．．．	1 unit	77.000
Front main circuit connection，single hole												
I	630	630	50	B	3WL11 06－2ロロ43－．．．．	1 unit	50.000	65	B	3WL11 06－3口ロ43－．．．．	1 unit	50.000
I	800	800	50	B	3WL11 08－2ロロ43－．．．．	1 unit	50.000	65	B	3WL11 08－3口ロ43－．．．．	1 unit	50.000
I	1000	1000	50	B	3WL11 10－2ロロ43－．．．．	1 unit	50.000	65	B	3WL11 10－3口ロ43－．．．．	1 unit	50.000
1	1250	1250	50	B	3WL11 12－2ロロ43－．．．．	1 unit	50.000	65	B	3WL11 12－3口ロ43－．．．．	1 unit	50.000
I	1600	1600	50	B	3WL11 16－2ロロ43－．．．．	1 unit	50.000	65	B	3WL11 16－3口ロ43－．．．．	1 unit	50.000
11	800	800	－		－			80	B	3WL12 08－3口प43－．．．．	1 unit	67.000
1	1000	1000	－		－			80	B	3WL12 10－3口ロ43－．．．．	1 unit	67.000
11	1250	1250	－		－			80	B	3WL12 12－3口ロ43－．．．．	1 unit	67.000
11	1600	1600	－		－			80	B	3WL12 16－3口ロ43－．．．	1 unit	67.000
1	2000	2000	55	B	3WL12 20－2ロロ43－．．．．	1 unit	67.000	80	B	3WL12 20－3口ロ43－．．．．	1 unit	67.000
1	2500	2500	55	B	3WL12 25－2口ロ43－．．．．	1 unit	71.000	80	B	3WL12 25－3口ロ43－．．．．	1 unit	71.000
11	3200	3200	－		－			80	B	3WL12 32－3口ロ43－．．．．	1 unit	77.000
Front main circuit connection，double hole												
，	630	630	50	B	3WL11 06－2ロロ44－．．．．	1 unit	50.000	65	B	3WL11 06－3ロロ44－．．．．	1 unit	50.000
I	800	800	50	B	3WL11 08－2口ロ44－．．．．	1 unit	50.000	65	B	3WL11 08－3口ロ44－．．．．	1 unit	50.000
I	1000	1000	50	B	3WL11 10－2ロロ44－．．．．	1 unit	50.000	65	B	3WL11 10－3口ロ44－．．．．	1 unit	50.000
I	1250	1250	50	B	3WL11 12－2ロロ44－．．．．	1 unit	50.000	65	B	3WL11 12－3口ロ44－．．．．	1 unit	50.000
।	1600	1600	50	B	3WL11 16－2ロロ44－．．．．	1 unit	50.000	65	B	3WL11 16－3口ロ44－．．．．	1 unit	50.000
11	800	800	－		－			80	B	3WL12 08－3ロロ44－．．．．	1 unit	67.000
11	1000	1000	－		－			80	B	3WL12 10－3口ロ44－．．．．	1 unit	67.000
1	1250	1250	－		－			80	B	3WL12 12－3口ロ44－．．．．	1 unit	67.000
11	1600	1600	－		3			80	B	3WL12 16－3口ロ44－．．．．	1 unit	67.000
11	2000	2000	55	B	3WL12 20－2ロロ44－．．．．	1 unit	67.000	80	B	3WL12 20－3口ロ44－．．．．	1 unit	67.000
11	2500	2500	55	B	3WL12 25－2ロロ44－．．．．	1 unit	71.000	80	B	3WL12 25－3口ロ44－．．．．	1 unit	71.000
11	3200	3200	－		－			80	B	3WL12 32－3口ロ44－．．．．	1 unit	77.000
Non－automatic circuit－breakers ${ }^{2}$ ）Order No．supplements \quad Order No．supplement												

Non－automatic circuit－breakers ${ }^{2}$ ）
without electronic trip unit
without electronic trip unit，communication／
measurement function optional ${ }^{3}$ ）\square

Electronic trip units

Design without ground－fault protection
ETU15B：protection functions LI
ETU25B：protection functions LSI
ETU45B：protection functions LSIN ${ }^{4}$ ）
ETU45B：protection functions LSIN 4 ）with 4 －line display
ETU55B：protection functions LSIN 4 ）
ETU76B：prot．func． LSIN 4 ）with pixel graphics display
Design with ground－fault protection
ETU27B：protection functions LSING 4 ）
ETU45B：protection functions LSING $\left.{ }^{4}\right)^{6}$ ）
ETU45B：prot．functions LSING ${ }^{4}$ ）with 4 －line display ${ }^{6}$ ）
ETU55B：protection functions $\left.\operatorname{LSING}{ }^{4}\right)^{6}$ ）
ETU76B：prot．func． LSING 4 ）with pixel graphics display ${ }^{6}$ ）

Order No．supplements

Standard Order No．supplements（for further Order No．supplements see Page 5／36）
Manual operating mechanism with mechanical closing
Without $1^{\text {st }}$ and $2^{\text {nd }}$ auxiliary releases；auxiliary switch $2 \mathrm{NC}+2 \mathrm{NO}$

AA
AB

AA

For footnotes see Page 5／33．

Circuit－Breakers／Non－Automatic Circuit－Breakers up to 6300 A，

SENTRON WL

4－pole，fixed－mounted design

Size	Max．rated circuit－breaker current I_{n} max．	$\begin{aligned} & \text { Rated current }{ }^{1} \text {) } \\ & I_{\mathrm{n}} \end{aligned}$	High switching capacity $\mathrm{H}, \mathrm{I}_{\text {cu }} / 440 \mathrm{~V}$			PS＊	Weight per PU approx．
					Order No． Order No．supplements see Page 5／36		
	A	A	kA	DT			kg
Horizontal main circuit connection							
II	800	800	100	B	3WL12 08－4 $\square \square 42-. .$.	1 unit	67.000
II	1000	1000	100	B	3WL12 10－4口ᄆ42－．．．．	1 unit	67.000
II	1250	1250	100	B	3WL12 12－4■口42－．．．．	1 unit	67.000
II	1600	1600	100	B	3WL12 16－4口ᄆ42－．．．．	1 unit	67.000
II	2000	2000	100	B	3WL12 20－4■口42－．．．．	1 unit	67.000
II	2500	2500	100	B	3WL12 25－4■口42－．．．．	1 unit	71.000
II	3200	3200	100	B	3WL12 32－4 $\square \square 42-. .$.	1 unit	77.000
$\left.115^{5}\right)$	4000	4000	100	C	3WL13 40－4■口42－．．．．	1 unit	106.000
$\left.1 I)^{5}\right)$	5000	5000	100	C	3WL13 50－4 $\square \square 42-. .$.	1 unit	106.000
Vertical main circuit connection							
II	800	800	100	B	3WL12 08－4 $\square \square 41-. .$.	1 unit	75.000
II	1000	1000	100	B	3WL12 10－4■口41－．．．．	1 unit	75.000
II	1250	1250	100	B	3WL12 12－4 $\square \square 41-. .$.	1 unit	75.000
II	1600	1600	100	B	3WL12 16－4 $\square \square 41-. .$.	1 unit	75.000
II	2000	2000	100	B	3WL12 20－4ロロ41－．．．．	1 unit	75.000
II	2500	2500	100	B	3WL12 25－4■口41－．．．．	1 unit	71.000
II	3200	3200	100	B	3WL12 32－4口ロ41－．．．．	1 unit	77.000
III ${ }^{5}$ ）	4000	4000	100	C	3WL13 40－4■口41－．．．	1 unit	106.000
$\left(1 I^{5}\right)$	5000	5000	100	C	3WL13 50－4 $\square \square 41$－．．．．	1 unit	106.000
$1115)$	6300	6300	100	C	3WL13 63－4■口41－．．．．	1 unit	106.000
Front main circuit connection，single hole							
II	800	800	100	B	3WL12 08－4■口43－．．．．	1 unit	67.000
II	1000	1000	100	B	3WL12 10－4口ᄆ43－．．．．	1 unit	67.000
II	1250	1250	100	B	3WL12 12－4■口43－．．．	1 unit	67.000
11	1600	1600	100	B	3WL12 16－4 $\square \square 43-. .$.	1 unit	67.000
11	2000	2000	100	B	3WL12 20－4 $\square \square 43-. .$.	1 unit	67.000
II	2500	2500	100	B	3WL12 25－4■口43－．．．	1 unit	71.000
II	3200	3200	100	B	3WL12 32－4■口43－．．．	1 unit	77.000
III ${ }^{5}$ ）	4000	4000	100	C	3WL13 40－4■口43－．．．．	1 unit	106.000
Front main circuit connection，double hole							
II	800	800	100	B	3WL12 08－4 $\square \square 44-\ldots$.	1 unit	67.000
II	1000	1000	100	B	3WL12 10－4 $\square \square 44$－．．．．	1 unit	67.000
II	1250	1250	100	B	3WL12 12－4■口44－．．．．	1 unit	67.000
11	1600	1600	100	B	3WL12 16－4口ᄆ44－．．．	1 unit	67.000
11	2000	2000	100	B	3WL12 20－4 $\square \square 44-. .$.	1 unit	67.000
11	2500	2500	100	B	3WL12 25－4 $\square \square 44-. .$.	1 unit	71.000
II	3200	3200	100	B	3WL12 32－4■口44－．．．．	1 unit	77.000
1115	4000	4000	100	C	3WL13 40－4 $\square \square 44-. .$.	1 unit	106.000

Non－automatic circuit－breakers ${ }^{2}$ ）	
without electronic trip unit without electronic trip unit，communication／measurement function optional ${ }^{3}$ ）	$\begin{aligned} & A A \\ & A B \end{aligned}$
Electronic trip units	
Design without ground－fault protection ETU15B：protection functions LI ${ }^{5}$ ） ETU25B：protection functions LSI ETU45B：protection functions LSIN ${ }^{4}$ ） ETU45B：protection functions LSIN^{4} ）with 4 －line display ETU55B：protection functions LSIN ${ }^{4}$ ） ETU76B：protection functions $\operatorname{LSIN}{ }^{4}$ ）with pixel graphics display	BB CB EB FB JB NB
Design with ground－fault protection ETU27B：protection functions LSING^{4} ） ETU45B：protection functions LSING $\left.{ }^{4}\right)^{6}$ ） ETU45B：protection functions LSING 4 ）with 4 －line display ${ }^{6}$ ） ETU55B：protection functions LSING $\left.{ }^{4}\right)^{6}$ ） ETU76B：protection functions LSING^{4} ）with pixel graphics display ${ }^{6}$ ）	DG EG FG JG NG

Standard Order No．supplements（for further Order No．supplements see Page 5／36）
Manual operating mechanism with mechanical closing
Without $1^{\text {st }}$ and $2^{\text {nd }}$ auxiliary releases；auxiliary switch $2 \mathrm{NC}+2 \mathrm{NO}$

Footnotes for pages $5 / 32$ and $5 / 33$ ：

1）Rated current determined by rated current module
On the standard design the supplied module is equal to the max．rated type current．
If a lower rated current is required，adaptation by order code on page $5 / 37$ ．
2）Permissible short－time current rating $I_{C C}$ and rated short－circuit making capacity I_{cm} for non－automatic circuit－breakers－see Page 5／20．
3）Required accessories＂PROFIBUS communication interface＂or＂Measure－ ment function Plus＂：Order No．with＂－Z＂and order code＂F02＂or＂F05＂ respectively，see Page 5／38．

4）Current transformers for vectorial summation current formation or for pro－ tection of the neutral conductor and current transformers for detection of the ground－fault current in the grounded star point of the transformer must be ordered separately，see Page 5／46，or they can be ordered by adding the supplement＂－Z＂and order code＂F23＂，see Page 5／37．
5）Size III circuit－breakers are not available with electronic trip unit design ETU15B．
6）ETU45B to ETU76B with ground－fault protection module GFM AT（alarm and tripping），see Page 5／46．
\square Start of delivery on request

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

4-pole, withdrawable design

解 prot. func. LSING ${ }^{4}$) with pixel graphics display

Manual operating mechanism with mechanical closing
Without $1^{\text {st }}$ and $2^{\text {nd }}$ auxiliary releases; auxiliary switch $2 \mathrm{NC}+2 \mathrm{NO}$
For footnotes see Page 5/35.

Circuit－Breakers／Non－Automatic Circuit－Breakers up to 6300 A，

4－pole，withdrawable design

Size	Max．rated circuit－breaker current $I_{\mathrm{n} \text { max．}}$ ． A	Rated current ${ }^{1}$ ）I_{n}A	High switching capacity $\mathrm{H}, \mathrm{I}_{\mathrm{cu}} / 440 \mathrm{~V}$			PS＊	Weight per PU approx．
					Order No． Order No．supplements see Page 5／36		
			kA	DT			kg
Without guide frame（for guide frames see Page 5／45）							
11	800	800	100	B	3WL12 08－4ロロ45－．．．．	1 unit	75.000
11	1000	1000	100	B	3WL12 10－4ロロ45－．．．．	1 unit	75.000
11	1250	1250	100	B	3WL12 12－4ロロ45－．．．．	1 unit	75.000
II	1600	1600	100	B	3WL12 16－4ロロ45－．．．．	1 unit	75.000
II	2000	2000	100	B	3WL12 20－4ロロ45－．．．．	1 unit	75.000
11	2500	2500	100	B	3WL12 25－4ロロ45－．．．．	1 unit	76.000
11	3200	3200	100	B	3WL12 32－4ロロ45－．．．．	1 unit	82.000
$111{ }^{5}$ ）	4000	4000	100	C	3WL13 40－4ロロ45－．．．．	1 unit	106.000
$1115{ }^{5}$ ）	5000	5000	100	C	3WL13 50－4ロロ45－．．．．	1 unit	106.000
$1115)$	6300	6300	100	C	3WL13 63－4ロロ45－．．．．	1 unit	227.000
With guide frame，horizontal main circuit connection							
11	800	800	100	B	3WL12 08－4ロロ46－．．．．	1 unit	109.000
11	1000	1000	100	B	3WL12 10－4ロロ46－．．．．	1 unit	109.000
11	1250	1250	100	B	3WL12 12－4ロロ46－．．．．	1 unit	109.000
11	1600	1600	100	B	3WL12 16－4ロロ46－．．．．	1 unit	109.000
11	2000	2000	100	B	3WL12 20－4ロロ46－．．．．	1 unit	109.000
11	2500	2500	100	B	3WL12 25－4ロロ46－．．．．	1 unit	123.000
11	3200	3200	100	B	3WL12 32－4ロロ46－．．．．	1 unit	136.000
${ }_{1115}^{5}$ ）	4000	4000	100	C	3WL13 40－4ロロ46－．．．．	1 unit	190.000
$1115)$	5000	5000	100	C	3WL13 50－4ロロ46－．．．．	1 unit	190.000
With guide frame，vertical main circuit connection							
11	800	800	100	B	3WL12 08－4ロロ47－．．．．	1 unit	109.000
11	1000	1000	100	B	3WL12 10－4ロロ47－．．．．	1 unit	109.000
11	1250	1250	100	B	3WL12 12－4ロロ47－．．．．	1 unit	109.000
11	1600	1600	100	B	3WL12 16－4ロロ47－．．．．	1 unit	109.000
11	2000	2000	100	B	3WL12 20－4ロロ47－．．．．	1 unit	109.000
11	2500	2500	100	B	3WL12 25－4ロロ47－．．．．	1 unit	123.000
11	3200	3200	100	B	3WL12 32－4ロロ47－．．．．	1 unit	136.000
	4000	4000	100	C	3WL13 40－4ロロ47－．．．．	1 unit	190.000
$\left.111^{5}\right)$	5000	5000	100	C	3WL13 50－4ロロ47－．．．．	1 unit	190.000
$1115)$	6300	6300	100	C	3WL13 63－4ロロ47－．．．．	1 unit	227.000
With guide frame，connecting flange							
11	800	800	100	B	3WL12 08－4ロロ48－．．．．	1 unit	109.000
11	1000	1000	100	B	3WL12 10－4ロロ48－．．．．	1 unit	109.000
11	1250	1250	100	B	3WL12 12－4ロロ48－．．．．	1 unit	109.000
11	1600	1600	100	B	3WL12 16－4ロロ48－．．．．	1 unit	109.000
11	2000	2000	100	B	3WL12 20－4ロロ48－．．．．	1 unit	109.000
11	2500	2500	100	B	3WL12 25－4ロロ48－．．．．	1 unit	123.000
II	3200	3200	100	B	3WL12 32－4ロロ48－．．．．	1 unit	136.000
1115	4000	4000	100	C	3WL13 40－4ロロ48－．．．．	1 unit	190.000
					Order No．supplements		

Non－automatic circuit－breakers ${ }^{2}$ ）

without electronic trip unit
without electronic trip unit，communication／measurement function optional ${ }^{3}$ ）

Electronic trip units

Design without ground－fault protection

ETU15B：protection functions LI ${ }^{5}$ ）
ETU25B：protection functions LSI
ETU45B：protection functions LSIN ${ }^{4}$
ETU45B：protection functions $\operatorname{LSIN}{ }^{4}$ ）with 4 －line display
ETU55B：protection functions LSIN ${ }^{4}$
ETU76B：protection functions $\operatorname{LSIN}{ }^{4}$ ）with pixel graphics display

Design with ground－fault protection

ETU27B：protection functions $\operatorname{LSING}{ }^{4}$
ETU45B：protection functions $\left.\operatorname{LSING}{ }^{4}\right)^{6}$ ）
ETU45B：protection functions LSING 4 ）with 4－line display ${ }^{6}$ ）
ETU55B：protection functions $\left.\mathrm{LSING}^{4}\right)^{6}$ ）
ETU76B：protection functions LSING ${ }^{4}$ ）with pixel graphics display ${ }^{6}$ ）

Standard Order No．supplements（for further Order No．supplements for circuit－breakers and guide frames，see Page $5 / 36$ ）
Manual operating mechanism with mechanical closing
Without $1^{\text {st }}$ and $2^{\text {nd }}$ auxiliary releases；auxiliary switch $2 \mathrm{NC}+2$ NO

Footnotes for pages $5 / 34$ and $5 / 35$ ：

1）Rated current determined by rated current module． On the standard design the supplied module is equal to the max．rated ype current．
If a lower rated current is required，adaptation by order code on page $5 / 37$ ．
2）Permissible short－time current rating $I_{C C}$ and rated short－circuit making capacity I_{cm} for non－automatic circuit－breakers－see Page 5／20．
3）Required accessories＂PROFIBUS communication setup＂or＂Measurement function Plus＂：Order No．with＂－Z＂and order code＂F02＂or＂F05＂respec－ tively，see Page 5／38

4）Current transformers for vectorial summation current formation or for pro－ tection of the neutral conductor and current transformers for detection of the ground－fault current in the grounded star point of the transformer must be ordered separately，see Page 5／46，or they can be ordered by adding the supplement＂－Z＂and order code＂F23＂，see Page 5／37．
5）Size III circuit－breakers are not available with electronic trip unit design ETU15B．
6）ETU45B to ETU76B with ground－fault protection module GFM AT（alarm and tripping），see Page 5／46．
\square Start of delivery on request

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

Options

Selection and ordering data

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

[^3]4) If ordering withdrawable circuit-breaker and guide frame separately specify order code "A05" for withdrawable circuit-breaker and guide frame.
\times available

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

Options

Closing solenoid suitable for continuous duty, $\mathbf{1 0 0} \%$ ON-time - Only possible if the 13th digit of the Order No. = "1"
Activation solenoid

AC 50/60 Hz V	DC V
-	24
-	30
-	48
-	60
110	110
230	220

Closing solenoid ${ }^{2}$) - unsuitable for continuous duty, 5% ON-time - Only possible if the 13th digit of the Order No. = "1"
Activation solenoid

AC $50 / 60 \mathrm{~Hz} \mathrm{~V}$	DC V	
-	24	(M) 3
-	48	(M) 3
110-127	110-125	3
208-240	220-250	M 36

Communication and measurement function ${ }^{3}$)

Breaker status sensor (BSS) connection
PROFIBUS communication interface ${ }^{5}$)
including COM15 and Breaker status sensor (BSS)
Measurement function (without PROFIBUS communication
interface) ${ }^{4}$)
Measurement function Plus (without PROFIBUS communication
interface) ${ }^{4}$)

EMC filter

EMC filter

Delivery as of July 2004

F 0 1 F
F 02
F 04
F 05
F\|3 $1 \rightarrow \square \square$

1) Not possible with "PROFIBUS communication interface" option, order code "F02".
2) Overexcited, i.e. closing time 25 ms (standard 60 ms).
3) For further information, see Section "Communication-capable circuit-breakers"
4) Additional voltage transformers are required for connection of the measurement function, see Page 5/51.
5) If ordering withdrawable circuit-breaker and guide frame separately, specify order code "F02" for withdrawable circuit-breaker only.

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

 SENTRON WLOptions

1) Padlocks not included in scope of supply.
2) Not possible with option "rated voltage AC/DC 1000 V", order code "A05".

Not possible with DC version.
Not possible with fixed-mounted design.

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

Options

Add "-Z" to the complete Order No. and indicate the appropriate order code(s).		Order code	\qquad Order No. with "-Z" 12345678910111213141516 3WL - - -Z and additional order code(s)		
			Code for "Further versions"-Z		
		Order code for fixed-mounted version		Order code for withdrawable version	
Locking devices					
Locking device against unauthorized closing, in the operator control panel The disconnector unit fulfills the requirements for main circuit-breakers to EN 60204 (VDE 0113)	Made by CES Made by IKON Mounting set FORTRESS or Castell ${ }^{1}$) Made by KIRK-Key ${ }^{1}$) Mounting set for padlocks ${ }^{2}$) Made by Ronis Made by Profalux		S 0 1 \mathbf{S} 0 3 \mathbf{S} 0 5 \mathbf{S} 0 6 \mathbf{S} 0 7 \mathbf{S} 0 8 \mathbf{S} 0 9		\mathbf{S} 0 1 \mathbf{S} 0 3 \mathbf{S} 0 5 \mathbf{S} 0 6 \mathbf{S} 0 7 \mathbf{S} 0 8 \mathbf{S} 0 9
EMERGENCY-STOP button	Mushroom-head pushbutton instead of the mechanical OFF button	$\begin{array}{l\|l\|l\|} \hline S & 2 & \\ \hline \end{array}$	$\square \square$	S 24	
Locking device against unauthorized closing, for withdrawable circuit-breakers The disconnector unit fulfills the requirements for main circuit-breakers to EN 60204 (VDE 0113), consisting of a lock in the cabinet door, active in the connected position; the function is retained when the circuitbreaker is replaced	Made by CES Made by IKON Made by Ronis Made by Profalux Made by KIRK-Key			R 6 1 R 6 3 R 6 8 R 6 0 \mathbf{R} 6 6	
Locking device for operating mechanism hand lever with padlock ${ }^{2}$)		S 3 3	$\square \square$	S 3	
Locking device to prevent movement of the withdrawable circuit-breaker Safety lock for fitting to circuit-breaker	Made by CES	-		S 717	
	Made by IKON	-			
	Made by O.M.R.	-		-17	
	Made by Profalux	-		(S 7 7 5	
	Made by Ronis	-		S 76	
	Made by KIRK-Key	-		S 4	
Locking devices					
Locking device to prevent movement of the withdrawable circuit-breaker in disconnected position, consisting of Bowden wire and lock in the cabinet door	Made by CES Made by IKON Made by O.M.R. Made by Profalux Made by Ronis Mounting set for padlocks ${ }^{2}$)	-		R 8 1 R 8 3 \mathbf{R} 8 4 R 8 5 R 8 6 R 8 8	
Locking device	to prevent opening of the cabinet door in: ON position (fixed mounted version)/ in connected position (withdrawable version) to prevent closing with the cabinet door open (on withdrawable version active in connected position) to prevent movement with the cabinet door open	S 3 \| 0 S 40		R 30 R 0 R 50	
Connection system for auxiliary conductors					
Connections for screwless connection system (tension spring) 1) Locks must be ordered from the manuf 2) Padlock not included in the scope of su Start of delivery on request.	turer. ply.	$\begin{array}{\|l\|l\|l\|} \hline N & 6 \\ \hline \end{array}$	$\square \square$	$P / 1$	

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

Add " $-\mathbf{Z}$ " to the complete Order No. and indicate the appropriate order code(s).		Order code	```Order No. with "-Z" 1234567 8 9101112 13141516 3WL. . . . - - -Z and additional order code(s)```
			Code for "Further versions"-Z
For withdrawable circuit-breaker including guide frame or guide frame only		Order code for 3 - and	
To select this connection system the 12th digit of the Order No. for the circuit-breaker must be a "6"		4-pole	
Connection system for main circuit connections			
Top and bottom: accessible from front, single hole	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	P 0	
Top and bottom: accessible from front, double hole	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	P 0 [1	
Top: accessible from front, double hole Bottom: accessible from front, single hole	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	P 06	
Top: rear horizontal, double hole Bottom: accessible from front, single hole	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	P 0 , 7	
Top: rear vertical Bottom: accessible from front, single hole	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	P	
Top: connecting flange Bottom: accessible from front, single hole	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	P 09	\square
Top: accessible from front, single hole Bottom: accessible from front, double hole	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	P 1 1	
Top: rear horizontal Bottom: accessible from front, double hole	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	P 1 1	
Top: rear vertical Bottom: accessible from front, double hole	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	P \mathbf{P} 1 3	
Top: connecting flange Bottom: accessible from front, double hole	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	P 14	
Top: accessible from front, single hole Bottom: rear horizontal	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	P 1 1 6	

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

Options

Add "-Z" to the complete Order No. and indicate the appropriate order code(s).		Order code	Order No. with "-Z" $1234567 \quad 8910111213141516$ 3WL. . . . - - -Z and additional order code(s) \square	
			Identification code for "Further versions"-Z	
For withdrawable circuit-breaker or guide frame To select this connection system the 12th digit of the Order No. for the circuit-breaker must be a "6"	guide frame	Order code for 3 and 4 -pole		
Connection system for main circuit connections				
Top: accessible from front, double hole Bottom: rear horizontal	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	P 1 1 7		
Top: rear vertical Bottom: rear horizontal	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A Size III, up to 5000 A	P\| 18		
Top: connecting flange Bottom: rear horizontal	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	P 19		
Top: accessible from front, single hole Bottom: front vertical	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	P\| 2	1	
Top: accessible from front, double hole Bottom: rear vertical	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	P 2 2		
Top: rear horizontal Bottom: rear vertical	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A Size III, up to 5000 A	P 2	\square	
Top: connecting flange Bottom: rear vertical	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	P 2 2 4		
Top: accessible from front, single hole Bottom: connecting flange	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A			
Top: accessible from front, double hole Bottom: connecting flange	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	P 2 2 7		
Top: rear horizontal Bottom: connecting flange	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	P 2		
Top: rear vertical Bottom: connecting flange	Size I, up to 1600 A Size II, up to 2000 A Size II, up to 2500 A Size II, up to 3200 A Size III, up to 4000 A	2		

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

Accessories/spare parts

Overview

Determination of the number of auxiliary supply connectors required

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

Selection and ordering data
Guide frame for AC circuit-breakers/non-automatic circuit-breakers

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

Accessories/spare parts

2) Can only be used in conjunction with "automatic reset of lockout device", e.g. "-Z" + "K01", 3WL9 111-0AK01-OAA0.

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

3WL9 111-OBB21-0AA0

[^4]
Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

Accessories/spare parts

3WL9 111-OAH07-OAAO

3WL9 111-OAH12-0AAO

3WL9 111-OAJO.-OAAO

3WL9 111-0AJ06-OAA0

3WL9 111-0BA72-0AAO

1) Not possible with motor shutdown switch.
2) Not possible with electrical ON button.
3) Only in conjunction with motorized operating mechanism.
4) Not possible with communication connection option, order code "F02".
5) $X 7$ manual connector required for circuit-breakers or guide frames. If this is not already available, please order additionally (see Pages $5 / 44$ and $5 / 49$).

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

Accessories/spare parts

3WL9 111-OAE1.-OAA0

3WL9 111-OAFO.-OAAO

3WL9 111-OAG03-OAAO

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

Accessories/spare parts

Circuit－Breakers／Non－Automatic Circuit－Breakers up to 6300 A，

Accessories／spare parts

Ill	Designation		DT	Order No．	PS＊	Weight per PU approx	
						kg	
吕 吕吕吕	CubicleBUS modules ${ }^{1}$ ）						
	Digital output module with rotary coding switch，optical coupler outputs		B	3WL9 111－0AT25－0AAO	1 unit	on req．	
	Digital output module with rotary coding switch，relay outputs		B	3WL9 111－0AT26－0AA0	1 unit	on req．	
	Digital output module，configurable，optocoupler outputs		B	3WL9 111－0AT30－0AAO	1 unit	on req．	
－	Digital output module，configurable，relay outputs		B	3WL9 111－0AT20－0AAO	1 unit	0.400	
E－01023	Digital input module		B	3WL9 111－0AT27－0AAO	1 unit	on req．	
3WL9 111－0AT23－0AAO	Analog output module		B	3WL9 111－0AT23－0AAO	1 unit	on req．	
	Zone Selective Interlocking module		B	3WL9 111－0AT21－0AAO	1 unit	on req．	
	Parameterization systems						
	Breaker Data Adapter （BDA）	Calibration，operation，monitoring，and diagnosis of SENTRON circuit－breakers via local interface；Breaker Data Adapter，connecting cable to SENTRON circuit－ breaker and to programming device（e．g．notebook）；can be run with Internet Explorer with JAVA2 VM 1．4．0－01	B	3WL9 111－0AT28－0AAO	1 unit	on req．	
	BDA Plus	Same as BDA，but with additional Ethernet interface for connection to Ethernet／Intranet／Internet	B	3WL9 111－0AT33－0AAO	1 unit	on req．	
	Connecting cable for BDA and BDA Plus	Connecting cable for connection of BDA and BDA Plus to LCD ETU trip unit of circuit－breaker SENTRON VL， length 1 m	C	3WL9 111－0BC20－0AAO	1 unit	on req．	
	Connecting cable for BDA Plus	Connecting cable for connection of BDA Plus to terminal X8 of circuit－breaker SENTRON WL． Required if neither COM 15 nor other external CubicleBUS modules are available，length 2 m ．	B	3WL9 111－0BC21－0AAO	1 unit	on req．	
3WL6 111－OAB01	Parameterization software Switch ES Power	Calibration，operation，monitoring，and diagnosis of SENTRON circuit－breakers via PROFIBUS DP；runs under Windows 95，Windows 98，Windows NT，Windows 2000 and Windows XP Professional，requires additional PROFIBUS card e．g．CP5613	A	3ZS2 311－0CC10－0YA0	1 unit	on req．	
	Accessories for communication						
	Factory－connected cables for CubicleBUS modules	0.2 m long，for connection to SENTRON WL with COM15 1 m long，for connection to SENTRON WL with COM15 2 m long，for connection to SENTRON WL with COM15 2 m long，for connection to SENTRON WL without COM15	BBBB	3WL9 111－0BC04－0AAO 3WL9 111－0BC02－0AAO 3WL9 111－0BC03－0AAO 3WL9 111－0BC05－0AAO	1 unit 1 unit 1 unit 1 unit	on req． on req． on req． on req．	
3WL9 111－OAT15－0AA0							
	SENTRON manual for communica－ tion solutions	Detailed description of the communication functions for SENTRON circuit－breakers．Installation，connection，com－ missioning and description of Switch ES Power and BDA． German English	X	$\begin{aligned} & \text { E20001-A201-P307 } \\ & \text { E20001-A201-P307-X-7600 } \end{aligned}$	1 unit1 unit	on req． on req．	
		Free download under： www．siemens．de／energieverteilung					
	Voltagetransformer，3－pole，		BBB	3WL9 111－0BB70－0AAO 3WL9 111－0BB63－0AA0 3WL9 111－0BB64－0AAO	1 unit 1 unit 1 unit	on req． on req． on req	
	transformer，3－pole， for SENTRON WL with measurement function and mea－ surement function Plus	380－440 V／100 V，class 0.5					
		$500-690 \mathrm{~V} / 100 \mathrm{~V}$ ，class 0.5					
	Retrofitting and spare parts			3WL9 111－0AT12－0AAO	1 unit	on req．	
	PROFIBUS retrofit kit	Retrofit kit for PROFIBUS communication including COM15，BSS and set of cables for all SENTRON WL circuit－breakers with ETU45B，ETU55B and ETU76B trip units	B				
		COM15 PROFIBUS module	B	3WL9 111－0AT15－0AAO	1 unit	on req．	
		Breaker status sensor（BSS）	B	3WL9 111－0AT16－0AAO	1 unit	on req．	
		Measurement function，without voltage transformer	B	3WL9 111－0AT02－0AAO	1 unit	on req．	
		Measurement function Plus，without voltage transformer	B				
	All communication components，CubicleBUS modules and measurement functions are available for the ETU45B，ETU55B and ETU76B trip units．						

1）Each CubicleBUS module is supplied with a 0.2 m factory－fitted cable to
connect the modules with each other．A longer factory－fitted cable is
required for connection to the circuit－breaker．

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

Accessories/spare parts

	Designation		DT	Order No.	PS*	Weight per PU approx.	
					kg		
	Main circuit connections, fixed mounting						
3WL9 111-0AL06-0AA0	Specified for each connection						
	Front-accessible main circuit connections, single hole at top	Size I, up to 1000 A		B	3WL9 111-0AL01-OAAO	1 unit	on req.
		Size I, 1250 A ... 1600 A	B	3WL9 111-0AL02-0AAO	1 unit	on req.	
		Size II, up to 2000 A	B	3WL9 111-0AL03-0AAO	1 unit	on req.	
		Size II, up to 2500 A	B	3WL9 111-0ALO4-0AAO	1 unit	on req.	
		Size II, up to 3200 A	B	3WL9 111-0AL05-0AAO	1 unit	on req.	
		Size III, up to 4000 A	B	3WL9 111-0AL06-0AAO	1 unit	on req.	
	Front-accessible main circuit connections, single hole at bottom	Size I, up to 1000 A	B	3WL9 111-0AL51-0AA0	1 unit	on req.	
		Size I, 1250 A ... 1600 A	B	3WL9 111-0AL52-0AA0	1 unit	on req.	
		Size II, up to 2000 A	B	3WL9 111-0AL53-0AAO	1 unit	on req.	
		Size II, up to 2500 A	B	3WL9 111-0AL54-0AA0	1 unit	on req.	
		Size II, up to 3200 A	B	3WL9 111-0AL55-0AA0	1 unit	on req.	
3WL9 111-0AL14-0AAO		Size III, up to 4000 A	B	3WL9 111-0AL56-0AA0	1 unit	on req.	
	Frontaccessible main circuit connections to DIN 43673, double hole at top	Size I, up to 1000 A	B	3WL9 111-0AL07-0AA0	1 unit	on req.	
		Size I, 1250 A ... 1600 A	B	3WL9 111-0AL08-0AAO	1 unit	on req.	
		Size II, up to 2000 A	B	3WL9 111-0AL11-0AA0	1 unit	on req.	
		Size II, up to 2500 A	B	3WL9 111-0AL12-0AA0	1 unit	on req.	
		Size II, up to 3200 A	B	3WL9 111-0AL13-0AA0	1 unit	on req.	
		Size III, up to 4000 A	B	3WL9 111-0AL14-0AA0	1 unit	on req.	
	Frontaccessible main circuit connections to DIN 43673, double hole at bottom	Size I, up to 1000 A	B	3WL9 111-0AL57-0AAO	1 unit	on req.	
3WL9 111-0AL64-0AA0		Size I, 1250 A ... 1600 A	B	3WL9 111-0AL58-0AAO	1 unit	on req.	
		Size II, up to 2000 A	B	3WL9 111-0AL61-0AA0	1 unit	on req.	
		Size II, up to 2500 A	B	3WL9 111-0AL62-0AA0	1 unit	on req.	
		Size II, up to 3200 A	B	3WL9 111-0AL63-0AA0	1 unit	on req.	
		Size III, up to 4000 A	B	3WL9 111-0AL64-0AA0	1 unit	on req.	
	Rear vertical main circuit connections	Size I^{1}), up to 1600 A	B	3WL9 111-0AM01-0AA0	1 unit	on req.	
		Size 11^{2}), up to 3200 A	B	3WL9 111-0AMO2-0AAO	1 unit	on rea.	
		Size III, up to 6300 A	B	3WL9 111-0AM03-0AAO	1 unit	on req.	

3WL9 111-OAMO3-OAAO

1) In the case of vertical connection size I, up to 1000 A 1 vertical connection 3WL9 111-0AM01-0AA0 is required,
up to 1600 A 2 vertical connections
3WL9 111-0AM01-0AA0 are required.
2) In the case of vertical connection size II, up to 2500 A 1 vertical connection 3WL9 111-0AM02-0AAO is required,
up to 3200 A 2 vertical connections
3WL9 111-0AM02-0AA0 are required.

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

Accessories/spare parts

	Designation D			Order No.	PS*	Weight per PU approx.	
				kg			
	Main circuit connections,	wable version	DT				
	Specified for each connection						
3WL9 111-0AN06-0AAO	Front-accessible main circuit connections, single hole top or bottom	Size I, up to 1000 A	B	3WL9 111-0AN01-OAA0	1 unit	on req.	
		Size I, 1250 A ... 1600 A	B	3WL9 111-0AN02-0AAO	1 unit	on req.	
		Size II, up to 2000 A	B	3WL9 111-0AN03-0AAO	1 unit	on req.	
		Size II, up to 2500 A	B	3WL9 111-0AN04-0AAO	1 unit	on req.	
		Size II, up to 3200 A	B	3WL9 111-0AN05-0AAO	1 unit	on req.	
		Size III, up to 4000 A	B	3WL9 111-0AN06-0AAO	1 unit	on req.	
	Frontaccessible main circuit connections to DIN 43673, double hole at top or bottom	Size I, up to 1000 A	B	3WL9 111-0AN07-0AAO	1 unit	on req.	
		Size I, 1250 A ... 1600 A	B	3WL9 111-0AN08-0AAO	1 unit	on req.	
3WL9 111-OAN14-OAAO		Size II, up to 2000 A	B	3WL9 111-0AN11-OAAO	1 unit	on req.	
		Size II, up to 2500 A	B	3WL9 111-0AN12-0AAO	1 unit	on req.	
		Size II, up to 3200 A	B	3WL9 111-0AN13-0AAO	1 unit	on req.	
		Size III, up to 4000 A	B	3WL9 111-0AN14-0AAO	1 unit	on req.	
	Support for front and DIN connecting bars						
	3-pole for 3 bars	Size I	B	3WL9 111-0AN41-0AA0	1 unit	on req.	
		Size II	B	3WL9 111-0AN42-0AAO	1 unit	on req.	
	4-pole for 4 bars	Size III	B	3WL9 111-0AN43-0AAO	1 unit	on req.	
		Size I	B	3WL9 111-0AN44-0AAO	1 unit	on req.	
		Size II	B	3WL9 111-0AN45-0AAO	1 unit	on req.	
		Size III	B	3WL9 111-0AN46-0AAO	1 unit	on req.	
	Rear vertical main circuit connections	Size I, up to 1000 A	B	3WL9 111-0AN15-0AA0	1 unit	on req.	
		Size I, 1250 A ... 1600 A	B	3WL9 111-0AN16-0AAO	1 unit	on req.	
		Size II, up to 2000 A	B	3WL9 111-0AN17-0AAO	1 unit	on req.	
		Size II, up to 2500 A	B	3WL9 111-0AN18-0AAO	1 unit	on req.	
3WL9 111-0AN41-OAA0		Size II, up to 3200 A	B	3WL9 111-0AN21-OAAO	1 unit	on req.	
		Size III, up to 5000 A	B	3WL9 111-0AN22-0AAO	1 unit	on req.	
		Size III, up to 6300 A (3 tion pieces for 3-pole cir		3WL9 111-0AN23-0AAO	1 unit	on req.	
		Size III, up to 6300 A (4 tion pieces for 4-pole cir		3WL9 111-0AN20-0AAO	1 unit	on req.	
		Size III, up to 6300 A (4 tion pieces for 4-pole cir		3WL9 111-0AN10-0AAO	1 unit	on req.	
	Rear horizontal circuit connections	Size I, up to 1000 A	B	3WL9 111-0AN32-0AA0	1 unit	on req.	
		Size I, 1250 A ... 1600 A	B	3WL9 111-0AN33-0AAO	1 unit	on rea.	
		Size II, up to 2000 A	B	3WL9 111-0AN34-0AAO	1 unit	on req.	
		Size II, up to 2500 A	B	3WL9 111-0AN35-0AAO	1 unit	on req.	
		Size II, up to 3200 A	B	3WL9 111-0AN36-0AAO	1 unit	on req.	
		Size III, up to 5000 A	B	3WL9 111-0AN37-0AAO	1 unit	on req.	
-	Connecting flange	Size I, up to 1000 A	B	3WL9 111-0AN24-OAAO	1 unit	on rea.	
		Size I, 1250 A ... 1600 A	B	3WL9 111-0AN25-0AAO	1 unit	on req.	
		Size II, up to 2000 A	B	3WL9 111-0AN26-0AAO	1 unit	on req.	
		Size II, up to 2500 A	B	3WL9 111-0AN27-0AAO	1 unit	on rea.	
		Size II, up to 3200 A	B	3WL9 111-0AN28-0AAO	1 unit	on req.	
		Size III, up to 4000 A	B	3WL9 111-0AN31-0AA0	1 unit	on req.	

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

Accessories/spare parts

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

 SENTRON WLAccessories/spare parts

Conversion for the following applications is possible

Top and bottom part of system are short-circuited and grounded (as-supplied state)

[^5]

Top and bottom part of system are short-circuited and grounded, incoming supply from below

Bottom part of system is short-circuited and grounded, incoming supply from above

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

Project planning aids

Overview

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

SENTRON WL circuit-breaker with $I_{\mathrm{n}}=1000 \mathrm{~A}$ and electronic trip unit ETU27B (ground-fault protection \mathbf{G})

Inverse-time delayed overload range \mathbf{L}
$I^{2} t=$ constant
Overlapping of the inverse-time delayed overload range \mathbf{L} of $I^{2} t$ and $I^{4} t$

Inverse-time delayed overload range \mathbf{L}
$I^{4} t=$ constantShort-time delayed short-circuit range \mathbf{S}
nstantaneous short-circuit range I
Ground-fault protection range \mathbf{G}

Tolerances for the operating currents
L : tripping operations between 1.05 and $1.2 \times I_{\mathrm{R}}$
S: -0 \%, +20 \%
I: $-0 \%,+20 \%$
G: -0 \%, +20 \%
Tolerances for the tripping times
L: - $20 \%,+0 \%$
$\mathrm{S}:-0 \%,+60 \mathrm{~ms}$
I: $<50 \mathrm{~ms}$
$\mathrm{G}:-0 \mathrm{~ms},+60 \mathrm{~ms}$

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

Project planning aids

Every electronic trip unit type and every setting has its own characteristic. Only a selection is shown in the following. The characteristics each show the largest and smallest setting range of SENTRON WL circuit-breakers with 1000 A rated current at 440 V rated voltage with various trip units.

In order to obtain a complete tripping characteristic the relevant parts of the characteristics have to be combined.
The characteristics show the behavior of the electronic trip unit when it is activated by a current that is already flowing before the tripping operation. If the overcurrent tripping occurs immediately after switch on and the electronic trip unit is therefore not yet enabled, the opening time is extended, depending on the level of the overcurrent by up to 15 ms . In order to determine the total break-times of the circuit-breakers, approximately 15 ms must be added to the opening times shown for the arcing time. Refer to the following table for tolerances.
The characteristics shown apply to ambient temperatures at the circuit-breaker between -5 and $+55^{\circ} \mathrm{C}$. The trip unit can be operated at ambient temperatures of -20 to $+70^{\circ} \mathrm{C}$. An extended tolerance band can apply at these temperatures.

SENTRON WL circuit-breaker with $I_{\mathrm{n}}=1000 \mathrm{~A}$ and electronic trip unit ETU45B or ETU55B
Inverse-time delayed overload range \mathbf{L}

SENTRON WL circuit-breaker with $I_{\mathrm{n}}=1000 \mathrm{~A}$ and electronic trip unit ETU45B or ETU55B
Instantaneous short-circuit range I

SENTRON WL circuit-breaker with $I_{\mathrm{n}}=1000 \mathrm{~A}$ and electronic trip unit ETU45B or ETU55B
Ground-fault protection range \mathbf{G}

SENTRON WL circuit-breaker with $I_{\mathrm{n}}=1000 \mathrm{~A}$ and electronic trip unit ETU45B or ETU55B
Short-time delayed short-circuit range \mathbf{S}

```
Inverse-time delayed overload range \(\mathbf{L}\)
\(I^{2} t=\) constant
Overlapping of the inverse-time delayed overload range \(\mathbf{L}\) of \(I^{2} t\) and \(I^{4} t\)
Inverse-time delayed overload range \(\mathbf{L}\)
\(I^{4} t=\) constant
Short-time delayed short-circuit range \(\mathbf{S}\)
Instantaneous short-circuit range I
Ground-fault protection range \(\mathbf{G}\)
```

Further characteristics are shown in the manual and the planning and configuring tool SIMARIS deSign, or ask your Siemens contact person.

Tolerances for the operating currents
L : tripping operations between 1.05 and $1.2 \times I_{\mathrm{R}}$
S: -0 \%, +20 \%
I: $-0 \%,+20 \%$
G: $-0 \%,+20 \%$
Tolerances for the tripping times
L: -20 \%, +0 \%
S: $-0 \%,+60 \mathrm{~ms}$
I: $<50 \mathrm{~ms}$
G: $-0 \mathrm{~ms},+60 \mathrm{~ms}$

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

Dimension drawings

Voltage transformer for SENTRON WL
with measurement function and measurement function Plus

Current transformers for
overload protection in the neutral conductor
External transformer for neutral conductors with copper connection pieces
Size I, 3WL9 111-0AA31-0AA0

Size II, 3WL9 111-0AA32-0AA0

Size III, 3WL9 111-0AA33-0AAO

- Dimensions for option with door interlocking

1) Mounting surface
2) Center SENTRON WL operator's panel
3) 8 borings for mounting of door sealing frames
4) 3 borings for mounting of door interlockings

External transformer for neutral conductors (without copper connection pieces)
Size I, 3WL9 111-0AA21-0AA0

Size II, 3WL9 111-0AA22-0AA0

Size III, 3WL9 111-0AA23-0AAO

Door cutout for operator's panel Door cutout with edge protection

Door cutout for operator's panel when using door sealing frame
Option with/without door sealing

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

Project planning aids

Door cut-out for operator panel using the protection cover IP55
Protection cover IP55

Safety distances to earthed parts

Nominal rated voltage above V/AC mm	lateral (each) mm	behind mm
Size I, fixed-mounted design		
440 (751)	0	0
690 751)	0	0
Size I, withdrawable design, without arc chute cover		
440 501)	0	0
690 501)	0	0
Size I, withdrawable design, with arc chute cover		
440 0	$0^{2)}$	0
690	$0^{2)}$	0
Size II, fixed-mounted design		
440 (75^{11}	0	0
690 751)	0	0
1000180	0	0
Size II, withdrawable design, without arc chute cover		
440 501)	0	0
690 501)	0	0
1000100	0	0
Size II, withdrawable design, with arc chute cover		
440 0	$0^{2)}$	0
6900	$0^{2)}$	0
Size III, fixed-mounted design		
440 (75 ${ }^{11}$	0	0
690 751)	0	0
1000180	0	0
Size III, withdrawable design, without arc chute cover		
440 501)	0	0
690 501)	0	0
1000100	0	0
Size III, withdrawable design, with arc chute cover		
440 0	$0^{2)}$	0
690 0	$0^{2)}$	0

Safety distances to live parts

Nominal rated voltage V/AC	above auxiliary connector mm	lateral (each) mm	behind mm
Size I, fixed-mounted design			
440	150	20	20
690	300	50	125
Size I, withdrawable design, without arc chute cover			
440	150	20	14
690	300	50	14
Size I, withdrawable design, with arc chute cover			
440	14	100	14
690	14	100	14
Size II, fixed-mounted design			
440	250	50	20
690	600	100	140
1000	430	100	125
Size II, withdrawable design, without arc chute cover			
440	250	50	14
690	600	100	30
1000	350	100	14
Size II, withdrawable design, with arc chute cover			
440	14	50	14
690	14	225	14
Size III, fixed-mounted design			
440	75	20	20
690	500	100	125
1000	430	100	125
Size III, withdrawable design, without arc chute cover			
440	50	20	14
690	500	100	14
1000	350	100	14
Size III, withdrawable design, with arc chute cover			
440	14	50	14
690	14	200	14

1) Value for plate; 0 mm for strut und grid pattern
2) 40 mm (Size II: 70 mm) for plates, which hide lateral apertures in the withdrawable frame

All Safety distances above circuit-breaker refer to the upper edge of auxiliary plug and not to the upper edge of the arc chute! See dimension drawings on pages $5 / 61$ to $5 / 66$, parts 4 and 5.

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,
 SENTRON WL

Project planning aids
Size I, up to 1600 A, fixed-mounted design, 3- and 4-pole

Standard design
Horizontal connection

Optional connection variants
Front connection (single)

Front connection (double hole) to DIN 43673

Vertical connection

1) Mounting space for removal of the arc chutes.
2) Slots (4 mm wide, 5 mm deep) for supporting phase barriers in the system.
3) Auxiliary connector with screw-type terminals (SIGUT).
4) Auxiliary connector with screwless connection system (tension spring).
5) Dimension to inside surface of the closed cabinet door.
6) Fixing points for mounting the circuit-breaker in the system.
7) "Secure OFF" locking device.
8) Key operation.
9) Termination surface.

Rated circuit-breaker current			
A	a	b	c
up to 1000	10	10	10
$1250-1600$	15	15	15

Safety clearances to grounded parts as well as to live parts, see page 5/60.

Project planning aids

Size I, up to 1600 A, withdrawable design, 3- and 4-pole

Standard design
 Horizontal connection

- 4-pole design

3) Slots (4 mm wide, 5 mm deep) for supporting phase barriers in the system.
4) Auxiliary connector with screw-type terminals (SIGUT)
5) Auxiliary connector with screwless connection system (tension spring).
6) Dimension to inside surface of the closed cabinet door.
7) SENTRON WL in connected position
8) SENTRON WL in test position.
9) SENTRON WL in disconnected position.
10) Fixing holes 10 mm .
11) Terminal face

Optional connection variants
Front connection (single)

Front connection (double hole) to DIN 43673

Vertical connection

Flange connection

Safety clearances to grounded parts as well as to live parts, see page 5/60.

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,
 SENTRON WL

Project planning aids
Size II, up to 3200 A, fixed-mounted design, 3- and 4-pole

Standard design
Horizontal connection

——4-pole design

1) Mounting space for removal of the arc chutes.
2) Slots (4 mm wide, 5 mm deep) for supporting phase barriers in the system.
3) Auxiliary connector with SIGUT screw-type terminals.
4) Auxiliary connector with tension spring connection.
5) Dimension to inside surface of the closed cabinet door.
6) Fixing points for mounting the circuit-breaker in the system.
7) Terminal face.
8) Top edge of circuit-breaker - only AC 1000 V design.

* Clearance to grounded parts.

Optional connection variants
Front connection (single)

Front connection (double hole)
to DIN 43673

Vertical connection

Rated circuit-breaker current			
A	a	b	c
up to 2000	10	10	10
2500	15	15	20
3200	30	30	20

Safety clearances to grounded parts as well as to live parts, see page 5/60.

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

Project planning aids

Size II, up to 3200 A, withdrawable design, 3- and 4-pole

Standard design
Horizontal connection

- 4-pole design

3) Slots (4 mm wide, 5 mm deep) for supporting phase barriers in the system.
4) Auxiliary connector with SIGUT screw-type terminals.
5) Auxiliary connector with tension spring connection.
6) SENTRON WL in connected position.
7) SENTRON WL in test position.
8) SENTRON WL in disconnected position.
9) Fixing holes, diameter 10 mm .
10) Terminal face.
11) Top edge of circuit-breaker - only AC 1000 V design.

* Clearance to grounded parts.

Optional connection variants
Front connection (single)

Front connection (double hole) to DIN 43673

Vertical connection

Flange connection

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,
 SENTRON WL

Project planning aids
Size III, up to 6300 A, fixed-mounted design, 3- and 4-pole

Standard design
Horizontal connection

- 4-pole design

1) Mounting space for removal of the arc chutes.
2) Slots (4 mm wide, 5 mm deep) for supporting phase barriers in the system.
3) Auxiliary connector with SIGUT screw-type terminals.
4) Auxiliary connector with tension spring connection.
5) Dimension to inside surface of the closed cabinet door.
6) Fixing points for mounting the circuit-breaker in the system.
7) Terminal face.
8) Top edge of circuit-breaker - only AC 1000 V design.

* Clearance to grounded parts.

Vertical connection

Optional connection variants
Front connection (single)
Front connection (single)

Front connection (double hole) to DIN 43673

Safety clearances to grounded parts as well as to live parts, see page 5/60.

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A, SENTRON WL

Project planning aids

Size III, up to 6300 A, withdrawable design, 3- and 4-pole

Standard design
 Horizontal connection, up to 5000 A

$\rightarrow 5785 \rightarrow 210 \rightarrow-210 \rightarrow-210 \rightarrow$

Optional connection variants Front connection (single hole), up to 4000 A

Front connection (double hole) to DIN 43673, up to 4000 A

Vertical connection, up to 6300 A

Flange connection, up to 4000 A

Rated circuit-breaker current		
A	a	b
4000	40	210
5000	40	210
6300	5	245

Safety clearances to grounded parts as well as to live parts, see page 5/60.

- 4-pole design

3) Slots (4 mm wide, 5 mm deep) for supporting phase barriers in the system
4) Auxiliary connector with SIGUT screw-type terminals.
5) Auxiliary connector with tension spring connection.
6) Dimension to inside surface of the closed cabinet door.
7) SENTRON WL in connected position.
8) SENTRON WL in test position.
9) SENTRON WL in disconnected position.
10) Fixing holes, diameter 10 mm .
11) Terminal face
12) Top edge of circuit-breaker - only AC 1000 V design.

Clearance to grounded parts.

Circuit-Breakers/Non-Automatic Circuit-Breakers up to 6300 A,

Circuit diagrams

Terminal assignment diagram

Circuit-Breakers, Approved acc. to UL 489, up to 5000 A, SENTRON WL

General data

Technical specifications

Short-circuit breaking capacity				
Size		I	II	III
Type		3WL51	3WL52	3WL53
Switching capacity class		S	H	H
up to AC 480 V	kA	65	100	100
up to AC 600 V Y/347 V	kA	50	-	85
up to AC 600 V	kA	-	85	-

Rated short-time withstand current	I	II	III
Size	3WL51	3WL52	3WL53
Type	S	H	H
Switching capacity class	kA	65	85
at max. delay time $t_{\text {sd }}=0.4 \mathrm{~s}$	65	8	

Further technical specifications					
Size			1		II
Type			3WL51 10	3WL51 16	3WL52 20
Rated current $I_{\mathbf{n}}$ at $40^{\circ} \mathrm{C}$, at $50 / 60 \mathrm{~Hz}$ Main conductor		A	up to 1000	1600	2000
Rated voltage $\boldsymbol{U}_{\mathbf{e}}$ at $50 / 60 \mathrm{~Hz}$		AC V	$600 \mathrm{Y} / 347$	600 Y/347	600
Ambient temperature of the system		${ }^{\circ} \mathrm{C}$	-25/+40	-25/+40	-25/+40
Power loss at rated current with AC symmetrical load Fixed-mounted circuit-breaker Withdrawable circuit-breaker		$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 100 \\ & 195 \end{aligned}$	$\begin{array}{r} 150 \\ 350 \\ \hline \end{array}$	$\begin{aligned} & 180 \\ & 320 \end{aligned}$
Operating times Make-time Break-time		$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 35 \\ & 38 \end{aligned}$	$\begin{aligned} & 35 \\ & 38 \end{aligned}$	$\begin{aligned} & 35 \\ & 34 \end{aligned}$
$\begin{aligned} & \text { Electr. make-time (via activation solenoid) }{ }^{1} \text {) } \\ & \text { Electr. break-time (via shunt release) } \end{aligned}$		$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 80 \\ & 73 \end{aligned}$	$\begin{aligned} & 80 \\ & 73 \end{aligned}$	$\begin{array}{r} 100 \\ 73 \end{array}$
Electr. break-time (instantaneous undervoltage release) Break-time due to ETU, instantaneous short-circuit release		$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{array}{r} 73 \\ 50 \\ \hline \end{array}$	$\begin{array}{r} 73 \\ 50 \\ \hline \end{array}$	$\begin{aligned} & 73 \\ & 50 \\ & \hline \end{aligned}$
Service life mechanical (without maintenance) mechanical (with maintenance) ${ }^{2}$) electrical (without maintenance)		cycles cycles cycles	$\begin{array}{r} 10000 \\ 20000 \\ 4000 \end{array}$	$\begin{array}{r} 10000 \\ 20000 \\ 4000 \end{array}$	$\begin{array}{r} 10000 \\ 15000 \\ 4000 \end{array}$
Operating frequency		1/h	60	60	60
Minimum interval between tripping operation by electronic trip unit and next making operation of the circuit-breaker (only with autom. mechanical resetting of the lockout device)		ms	80	80	80
Minimum dimension Circuit-breaker section (width \times height \times depth)	3 -pole	mm	$400 \times 460 \times 380$	$400 \times 460 \times 380$	$500 \times 460 \times 380$
Service position			and/ or		
Main conductor minimum cross-sections		Qty. mm^{2} or inches	$\begin{aligned} & 2 \\ & 6.4 \times 76.2 \\ & 1 / 4 \times 3 \end{aligned}$	$\begin{aligned} & 2 \\ & 6.4 \times 76.2 \\ & 1 / 4 \times 3 \end{aligned}$	$\begin{aligned} & 2 \\ & 6.4 \times 102 \\ & 1 / 4 \times 4 \end{aligned}$
Auxiliary conductors (Cu) Max. no. of auxiliary conductors \times crosssection (solid/stranded)	Standard connection = strain-relief clamp without end sleeve with end sleeve to DIN 46228 Part 2 with twin end sleeve		$\begin{aligned} & 2 \times 0.5 \mathrm{~mm}^{2} \text { (AWG } \\ & 1 \times 0.5 \mathrm{~mm}^{2} \text { (AWG } \\ & 2 \times 0.5 \mathrm{~mm}^{2} \text { (AWG } \\ & 2 \times 0.5 \mathrm{~mm}^{2} \text { (AWG } \\ & 2 \times 0.5 \mathrm{~mm}^{2} \text { (AWG } \end{aligned}$	$\begin{aligned} & \times 1.5 \mathrm{~mm}^{2}(\mathrm{AWG} \\ & \times 1.5 \mathrm{~mm}^{2}(\mathrm{AWG} \\ & \times 1.5 \mathrm{~mm}^{2}(\mathrm{AWG} \\ & \times 2.5 \mathrm{~mm}^{2}(\mathrm{AWG} \\ & \times 1.5 \mathrm{~mm}^{2}(\mathrm{AWG} \end{aligned}$	$5 \mathrm{~mm}^{2} \text { (AWG 14) }$
Weights 3-pole	Fixed-mounted circuit-breaker Withdrawable circuit-breaker Guide frame	$\begin{aligned} & \mathrm{kg} \\ & \mathrm{~kg} \\ & \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 43 \\ & 45 \\ & 25 \end{aligned}$	$\begin{aligned} & 43 \\ & 45 \\ & 25 \end{aligned}$	$\begin{aligned} & 56 \\ & 60 \\ & 31 \end{aligned}$

1) Make-time via activation solenoid for synchronization purposes (short-time excited) 85 ms .
2) Maintenance means: replace the main contact elements and arc chutes (see Operator's Guide)

Circuit-Breakers, Approved acc. to UL 489, up to 5000 A,

SENTRON WL
General data

Size Type							III	
				3WL52 25		3WL52 30	3WL53 40	3WL53 50
Rated current $I_{\text {n }}$ at $40^{\circ} \mathrm{C}$, at $50 / 60 \mathrm{~Hz}$ Main conductor			A	2500		3000	4000	5000
Rated voltage $\boldsymbol{U}_{\mathbf{e}}$ at $50 / 60 \mathrm{~Hz}$			AC V	600		600	up to $600 \mathrm{Y} / 347$	up to $600 \mathrm{Y} / 347$
Ambient temperature of the system			${ }^{\circ} \mathrm{C}$	$-25 /+40$		-25/+40	-25/+40	-25/+40
Power loss at rated current with AC symmetrical load Fixed-mounted circuit-breaker Withdrawable circuit-breaker			$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 270 \\ & 520 \end{aligned}$		$\begin{aligned} & 410 \\ & 710 \end{aligned}$	$\begin{aligned} & 520 \\ & 810 \\ & \hline \end{aligned}$	$\begin{array}{r} 630 \\ 1050 \end{array}$
Operating times Make-time Break-time Electr. make-time (via activation solenoid) ${ }^{1}$) Electr. break-time (via shunt release) Electr. break-time (instantaneous undervoltage release) Break-time due to ETU, instantaneous short-circuit release			ms ms ms ms ms ms	$\begin{array}{r} 35 \\ 34 \\ 100 \\ 73 \\ 73 \\ 50 \\ \hline \end{array}$		$\begin{array}{r} 35 \\ 34 \\ 100 \\ 73 \\ 73 \\ 50 \\ \hline \end{array}$	$\begin{array}{r} 35 \\ 34 \\ 100 \\ 73 \\ 73 \\ 50 \\ \hline \end{array}$	$\begin{array}{r} 35 \\ 34 \\ 100 \\ 73 \\ 73 \\ 50 \\ \hline \end{array}$
Service life mechanical (without maintenance) mechanical (with maintenance) ${ }^{2}$) electrical (without maintenance)			cycles cycles cycles	$\begin{array}{r} 10000 \\ 15000 \\ 4000 \\ \hline \end{array}$		$\begin{array}{r} 10000 \\ 15000 \\ 4000 \\ \hline \end{array}$	$\begin{array}{r} 5000 \\ 10000 \\ 1000 \end{array}$	$\begin{array}{r} 5000 \\ 10000 \\ 1000 \end{array}$
Operating frequency			1/h	60		60	60	60
Minimum interval between tripping operation by electronic trip unit and next making operation of the circuit-breaker (only with autom. mechanical resetting of the lockout device)				80		80	80	80
Minimum dimension Circuit-breaker section (width \times height \times depth)	3-pole		mm	500×460	$\times 380$	$500 \times 460 \times 380$	$800 \times 460 \times 380$	$800 \times 460 \times 380$
Service position				$\underbrace{30^{\circ},{ }^{30}}_{\text {NSEO_OOO6 }}$	and/ or			
Main conductor minimum cross-sections			Qty. mm^{2} or inches	$\begin{aligned} & 2 \\ & 6.4 \times 127 \\ & 1 / 4 \times 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 6.4 \times 63.5 \\ & 1 / 4 \times 2-1 / 2 \end{aligned}$	$\begin{aligned} & 4 \\ & 6.4 \times 102 \\ & 1 / 4 \times 4 \end{aligned}$	$\begin{aligned} & 4 \\ & 10 \times 120 \\ & \left.1 / 4 \times 5^{3}\right) \end{aligned}$	$\begin{aligned} & 4 \\ & 10 \times 120 \\ & \left.1 / 4 \times 5^{3}\right) \end{aligned}$
Auxiliary conductors (Cu) Standard connection = strain-relief clamp Max. no. of without end sleeve auxiliary conductors \times cross- section (solid/stranded) with end sleeve to DIN 46228 T.2 with twin end sleeve optional connection = tension spring without end sleeve with end sleeve to DIN 46228 T.2				$\begin{aligned} & 2 \times 0.5 \mathrm{~mm}^{2}\left(\text { AWG 20) } \ldots 2 \times 1.5 \mathrm{~mm}^{2}\left(\text { AWG 16); } 1 \times 2.5 \mathrm{~mm}^{2}(\text { AWG 14) }\right.\right. \\ & 1 \times 0.5 \mathrm{~mm}^{2}\left(\text { AWG 20) } \ldots 1 \times 1.5 \mathrm{~mm}^{2}\right. \text { (AWG 16) } \\ & 2 \times 0.5 \mathrm{~mm}^{2}\left(\text { AWG 20) } \ldots 2 \times 1.5 \mathrm{~mm}^{2}\right. \text { (AWG 16) } \\ & \\ & 2 \times 0.5 \mathrm{~mm}^{2}\left(\text { AWG 20) } \ldots 2 \times 2.5 \mathrm{~mm}^{2}\right. \text { (AWG 14) } \\ & 2 \times 0.5 \mathrm{~mm}^{2}\left(\text { AWG 20) } \ldots 2 \times 1.5 \mathrm{~mm}^{2}\right. \text { (AWG 16) } \end{aligned}$				
Weights 3-pole	Fixed Withd Guide	reak eaker	$\begin{aligned} & \mathrm{kg} \\ & \mathrm{~kg} \\ & \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 59 \\ & 63 \\ & 39 \end{aligned}$		$\begin{aligned} & 64 \\ & 68 \\ & 45 \end{aligned}$	$\begin{aligned} & 82 \\ & 88 \\ & 60 \end{aligned}$	$\begin{aligned} & 82 \\ & 88 \\ & 60 \end{aligned}$

1) Make-time via activation solenoid for synchronization purposes (short-time excited) 50 ms .
2) Maintenance means: replace the main contact elements and arc chutes (see Operator's Guide).
3) $1 / 4 \times 5$ for fixed-mounted circuit-breakers on request.

Circuit-Breakers, Approved acc. to UL 489, up to 5000 A,
 SENTRON WL

General data

Size				I ... III
Manual operating mechanism with mechanical closing				
Closing/ charging stored-energy feature	Max. force required to operate the hand lever Required number of strokes on the hand lever		N	$\begin{aligned} & \leq 230 \\ & 9 \end{aligned}$
Manual operating mechanism with mechanical and electrical closing				
Charging stored-energy feature				
Closing solenoid (CC)	Operating range			$85 . .110$ \%
	Extended operating range for battery operation	for DC $24 \mathrm{~V}, \mathrm{DC} 48 \mathrm{~V}$ DC 60 V, DC 110 V DC 220 V		$70 . .126$ \%
	Power input	AC/DC	VA/W	15/15
	Minimum command duration rated voltage for the closing solenoid		ms	60
	Short-circuit protection	Fuse		1 A

Manual/motorized operating mechanism with mechanical and electrical closing

Manual operating mechanism				
Motor	Operating range			$85 . . .110$ \%
	Extended operating range for battery operation	for DC $24 \mathrm{~V}, \mathrm{DC} 48 \mathrm{~V}$ DC 60 V, DC 110 V DC 220 V		$70 . .126$ \%
	Power input to motor	AC/DC	VA/W	110/110
	Time required to charge the stored-energy mechanism at $1 \times$ rated voltage		S	≤ 10
Closing solenoid				
For motor and closing solenoid	Short-circuit protection Motor and closing solenoid for the same rated control supply voltages	Fuse		2 A
	Smallest permissible fuse	at $24-30 \mathrm{~V}$ at $48-60 \mathrm{~V}$ at $110-127 \mathrm{~V}$ at $220-250 \mathrm{~V}$		$\begin{aligned} & 2 \mathrm{~A} \\ & 2 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & 1 \mathrm{~A} \\ & \hline \end{aligned}$

Electronic trip unit signals

Measuring accuracy of the electronic trip unit					protection functions to
Auxiliary releases					
$\begin{aligned} & \hline \text { Shunt release (ST) (F1, } \\ & \text { F2)/ } \\ & \text { Closing solenoid } \end{aligned}$	For continuous command (100 \% ON-time), locks out on momentarycontact commands	Operating value	Pickup		$>0.7 \times$ rated voltage (circuit-breaker is tripped)
		Operating range			85 ... 110 \%
		Extended operating range for battery operation	$\begin{aligned} & \text { for DC } 24 \mathrm{~V}, \mathrm{~L} \\ & \text { DC } 60 \mathrm{~V}, \mathrm{DC} \\ & \text { DC } 220 \mathrm{~V} \end{aligned}$		$70 . .126$ \%
		Rated voltage	$\begin{aligned} & \text { AC 50/60 Hz } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 110 ; 230 \\ & 24 ; 30 ; 48 ; 60 ; 110 ; 220 \end{aligned}$
		Power input	AC/DC	VA/W	15/15
		Minimum command duration at rated voltage		ms	60
		Opening time of the circuit-breaker at rated voltage	AC/DC	ms	80
		Short-circuit protection			1 A
		Smallest permissible fuse			
	With stored energy feature consisting of shunt release and capacitor storage device	Rated voltage	$\begin{aligned} & \text { AC } 50 / 60 \mathrm{~Hz} \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 110 ; 230 \\ & 110 ; 220 \end{aligned}$
		Operating range			$85 . . .110$ \%
		Power input	AC/DC	VA/W	1/1
		Storage time/recharging time at rated voltage			max. $5 \mathrm{~min} / \mathrm{min} .5 \mathrm{~s}$
		Opening time of circuit-breaker, short-	cuit protection	ms	80

General data

Size		I ... III		
Auxiliary releases				
Undervoltage release UVR (F3) and UVR- t_{d} (F4)	Operating values	pickup dropout		$\begin{aligned} & \geq 0.85 \times U_{\mathrm{s}} \text { (circuit-breaker can } \\ & \text { be closed) } \\ & 0.35 \ldots 0.7 \times U_{\mathrm{s}} \text { (circuit-breaker } \\ & \text { is tripped) } \end{aligned}$
	Operating range			0.85 ... 1.1
	Extended operating range for battery operation	for DC $24 \mathrm{~V}, \mathrm{DC} 30 \mathrm{~V}$, DC 48 V, DC 110 V , DC 220 V		0.85 ... 1.26
	Rated control supply voltage $U_{\text {s }}$	$\begin{aligned} & \mathrm{AC} 50 / 60 \mathrm{~Hz} \\ & \mathrm{DC} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 110 \ldots 127 / 208 \ldots 240 / 380 \ldots 415 \\ & \left.24 / 30 / 48 / 110 / 220 \ldots 250^{1}\right) \\ & \hline \end{aligned}$
	Power input (pickup/continuous duty)	$\begin{aligned} & \hline \text { AC } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \hline \text { VA } \\ & \text { W } \end{aligned}$	$\begin{aligned} & (200=\text { pickup }) 5 \\ & (200=\text { pickup }) 5 \\ & \hline \end{aligned}$
	Opening time of circuit-breaker at $U_{S}=0$		ms	200
	Design UVR (F3) Instantaneous With delay		ms ms	$\begin{array}{r} 80 \\ 200 \end{array}$
	Design UVR- t_{d} (F8) With delay, $t_{d}=0.2 \ldots 3.2 \mathrm{~s}$ Reset via additional NC contact, direct switching-off		$\begin{aligned} & \mathrm{S} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 0.2 \ldots 3.2 \\ & \leq 100 \end{aligned}$
	Short-circuit protection Smallest permissible fuse			1 A
Contact position-driven auxiliary switches (S1, S2, S3, S4, S7, S8)				
Rated insulation voltage U_{i}			AC/DC V	300
Rated operating voltage U_{e}			AC/DC V	240
Switching capacity	AC $50 / 60 \mathrm{~Hz}$		A	10
	DC P 300 heavy duty		A	10
Ready-to-close signaling switch (S20) (to UL 1054)				
Switching capacity	Rated operating voltage Rated operating current		$\begin{aligned} & \hline \text { V } \\ & \text { A } \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 3 \\ & \hline \end{aligned}$

[^6]
Circuit-Breakers, Approved acc. to UL 489, up to 5000 A, SENTRON WL

General data

For tripping characteristics and dimensions as for "Circuit-breakers/non-automatic circuit-breakers up to 6300 A , SENTRON WL", see Pages 5/57 to 5/67.

Circuit－Breakers，Approved acc．to UL 489，up to 5000 A，

Selection and ordering data

Size	Max．rated circuit－breaker current $I_{\mathrm{n} \text { max．}}$ ． A	Rated current ${ }^{1}$ ）I_{n}A	Switching capacity 480 V			PS＊		Weight per PU approx． kg
			kA	DT	Order No． Order No．supplements see Page 5／36			
Horizontal main circuit connection								
I	1000	1000	65	B	3WL51 10－3 $\square \square 32-. .$.		1 unit	43.000
I	1600	1600	65	B	3WL51 16－3口口32－．．．．		1 unit	43.000
II	2000	2000	100	B	3WL52 20－4■口32－．．．．		1 unit	56.000
II	2500	2500	100	B	3WL52 25－4口口32－．．．		1 unit	59.000
II	3000	3000	100	B	3WL52 30－4■口32－．．．．		1 unit	64.000
III	4000	4000	100	C	3WL53 40－4■口32－．．．．		1 unit	82.000
III	5000	5000	100	C	3WL53 50－4 $\square \square 32-. .$.		1 unit	82.000
Vertical main circuit connection								
I	1000	1000	65	B	3WL51 10－3口■31－．．．		1 unit	43.000
I	1600	1600	65	B	3WL51 16－3口■31－．．．		1 unit	43.000
II	2000	2000	100	B	3WL52 20－4 $\square \square 31-. .$.		1 unit	56.000
II	2500	2500	100	B	3WL52 25－4■口31－．．．		1 unit	59.000
II	3000	3000	100	B	3WL52 30－4■口31－．．．．		1 unit	64.000
III	4000	4000	100	C	3WL53 40－4■口31－．．．．		1 unit	82.000
III	5000	5000	100	C	3WL53 50－4口口31－．．．．		1 unit	82.000
Front main circuit connection，single hole								
I	1000	1000	65	B	3WL51 10－3口■33－．．．		1 unit	43.000
I	1600	1600	65	B	3WL51 16－3口■33－．．．		1 unit	43.000
II	2000	2000	100	B	3WL52 20－4■口33－．．．．		1 unit	56.000
II	2500	2500	100	B	3WL52 25－4■口33－．．．．		1 unit	59.000
II	3000	3000	100	B	3WL52 30－4 $\square \square 33-\ldots$.		1 unit	64.000
III	4000	4000	100	C	3WL53 40－4 $\square \square 33-. .$.		1 unit	82.000
Front main circuit connection，double hole								
I	1000	1000	65	B	3WL51 10－3口 $\square 34-\ldots$.		1 unit	43.000
I	1600	1600	65	B	3WL51 16－3口口34－．．．．		1 unit	43.000
II	2000	2000	100	B	3WL52 20－4■口34－．．．．		1 unit	56.000
II	2500	2500	100	B	3WL52 25－4 $\square \square 34-. .$.		1 unit	59.000
II	3000	3000	100	B	3WL52 30－4■口34－．．．		1 unit	64.000
III	4000	4000	100	C	3WL53 40－4 $\square \square 34-\ldots$.		1 unit	82.000

Electronic trip units

Design without ground－fault protection
ETU25B：protection functions LSI
Order No．supplements

ETU45B：protection functions $\operatorname{LSIN}{ }^{2}$ ）
ETU45B：protection functions LSIN^{2} ）with 4－line display
Design with ground－fault protection
ETU45B：protection functions $\left.\operatorname{LSING}{ }^{2}\right)^{3}$ ）

Standard Order No．supplements（for further Order No．supplements see Page 5／36）
Manual operating mechanism with mechanical closing
Without 1st and 2nd auxiliary release；auxiliary switch
$2 \mathrm{NC}+2 \mathrm{NO}$
Further Order No．supplements see Page 5／36
Note：max．voltage for auxiliary circuits 240 V ．
1）Rated current determined by rated current module．
On the standard design the supplied module is equal to the max．rated type current．If a lower rated current is required，adaptation by order code on page 5／76．
2）Current transformers for vectorial summation current formation or for pro－ tection of the neutral conductor and current transformers for detection of the ground－fault current in the grounded star point of the transformer should be ordered separately，see Pages 5／37 and 5／46．
3）ETU45B with ground－fault protection module GFM AT（alarm and tripping）， see Page 5／76．

Circuit－Breakers，Approved acc．to UL 489，up to 5000 A，
 SENTRON WL

3－pole，withdrawable design

Size	Max．rated circuit－breaker current $I_{\mathrm{n} \text { max．}}$ ． A	Rated current ${ }^{1}$ ） I_{n} A	Switching capacity 480 V			PS＊		Weight per PU approx． kg
					Order No． Order No．supplements			
			kA	DT	see Page 5／36			
Without guide frame（for guide frames see Page 5／75）								
I	1000	1000	65	B	3WL51 10－3口ロ35－．．．		1 unit	45.000
I	1600	1600	65	B	3WL51 16－3口ロ35－．．．．		1 unit	45.000
II	2000	2000	100	B	3WL52 20－4 $\square \square 35-. .$.		1 unit	60.000
II	2500	2500	100	B	3WL52 25－4■口35－．．．．		1 unit	63.000
II	3000	3000	100	B	3WL52 30－4■口35－．．．．		1 unit	68.000
III	4000	4000	100	C	3WL53 40－4■口35－．．．		1 unit	88.000
III	5000	5000	100	C	3WL53 50－4 $\square \square 35-. .$.		1 unit	88.000
With guide frame，horizontal main circuit connection								
I	1000	1000	65	B	3WL51 10－3口ロ36－．．．		1 unit	70.000
I	1600	1600	65	B	3WL51 16－3口ロ36－．．．．		1 unit	70.000
II	2000	2000	100	B	3WL52 20－4 $\square \square 36-. .$.		1 unit	91.000
II	2500	2500	100	B	3WL52 25－4■口36－．．．		1 unit	102.000
II	3000	3000	100	B	3WL52 30－4■口36－．．．．		1 unit	113.000
III	4000	4000	100	C	3WL53 40－4■口36－．．．		1 unit	148.000
III	5000	5000	100	C	3WL53 50－4 $\square \square 36-. .$.		1 unit	148.000
With guide frame，vertical main circuit connection								
I	1000	1000	65	B	3WL51 10－3口ロ37－．．．．		1 unit	70.000
I	1600	1600	65	B	3WL51 16－3口口37－．．．．		1 unit	70.000
II	2000	2000	100	B	3WL52 20－4■口37－．．．．		1 unit	91.000
II	2500	2500	100	B	3WL52 25－4■口37－．．．．		1 unit	102.000
II	3000	3000	100	B	3WL52 30－4 $\square \square 37-\ldots$.		1 unit	113.000
III	4000	4000	100	C	3WL53 40－4 $\square \square 37-$ ．		1 unit	148.000
III	5000	5000	100	C	3WL53 50－4■口37－．．．．		1 unit	148.000
With guide frame，connecting flange								
I	1000	1000	65	B	3WL51 10－3口ロ38－．．．		1 unit	70.000
I	1600	1600	65	B	3WL51 16－3口ロ38－．．．．		1 unit	70.000
II	2000	2000	100	B	3WL52 20－4 $\square \square 38-. .$.		1 unit	91.000
II	2500	2500	100	B	3WL52 25－4■口38－．．．．		1 unit	102.000
II	3000	3000	100	B	3WL52 30－4 $\square \square 38-\ldots$.		1 unit	113.000
III	4000	4000	100	C	3WL53 40－4■口38－．．．．		1 unit	148.000

Electronic trip units

Design without ground－fault protection
ETU25B：protection functions LSI
ETU45B：protection functions LSIN^{2} ）
ETU45B：protection functions LSIN^{2} ）with 4－line display
Design with ground－fault protection
ETU45B：protection functions $\left.\operatorname{LSING}^{2}\right)^{3}$ ）
Order No．supplement

ETU45B：protection functions $\left.\operatorname{LSING}{ }^{2}\right)^{3}$ ）with 4－line display
Standard Order No．supplements（for further Order No．supplements for circuit－breakers and guide frames，see Page $5 / 36$ ）
Manual operating mechanism with mechanical closing
Without 1st and 2nd auxiliary release；auxiliary switch
$2 \mathrm{NC}+2 \mathrm{NO}$
Further Order No．supplements see Page 5／36
Note：max．voltage for auxiliary circuits 240 V ．
1）Rated current determined by rated current module．
On the standard design the supplied module is equal to the max．rated type current．If a lower rated current is required，adaptation by order code on page 5／76．
2）Current transformers for vectorial summation current formation or for pro－ tection of the neutral conductor and current transformers for detection of the ground－fault current in the grounded star point of the transformer should be ordered separately，see Pages 5／37 and 5／46．
3）ETU45B with ground－fault protection module GFM AT（alarm and tripping）， see Page 5／76．

Selection and ordering data
Guide frame for circuit-breakers approved to UL 489

Circuit-Breakers, Approved acc. to UL 489, up to 5000 A, SENTRON WL

Accessories/spare parts

	Designation	DT	Order No.	PS*	Weight per PU approx.
					kg
	Electronic trip units with protection function				
	ETU25B LSI	C	3WL9 352-5AA00-0AA1	1 unit	on req.
	ETU45B without measurement function LSIN(G)	C	3WL9 354-5AA00-0AA1	1 unit	on req.
	ETU45B with measurement function LSIN(G)	C	3WL9 354-5AA10-0AA1	1 unit	on req.
	Rated current module / rating plug \quad Rated current $I_{\mathrm{n}}(\mathrm{A})$				
	For size I, II 250	B	3WL9 111-2AA51-0AAO	1 unit	on req.
	315	B	3WL9 111-2AA52-0AAO	1 unit	on req.
	400	B	3WL9 111-2AA53-0AAO	1 unit	on req.
	500	B	3WL9 111-2AA54-0AAO	1 unit	on req.
	630	B	3WL9 111-2AA55-0AAO	1 unit	on req.
	800	B	3WL9 111-2AA56-0AAO	1 unit	on req.
	1000	B	3WL9 111-2AA57-0AAO	1 unit	on req.
SIEMENS	For size I, II, III 1250	B	3WL9 111-2AA58-0AAO	1 unit	on req.
	1600	B	3WL9 111-2AA61-0AAO	1 unit	on req.
	For size II, III 2000	B	3WL9 111-2AA62-0AAO	1 unit	on req.
$I_{\mathrm{n}}=3200 \mathrm{~A}$	2500	B	3WL9 111-2AA63-0AAO	1 unit	on req.
NSEO_00992a	3000	B	3WL9 111-2AA77-0AAO	1 unit	on req.
3WL9 111-2AA65-0AA00	For size III 4000	B	3WL9 111-2AA65-0AA0	1 unit	on req.
	5000	B	3WL9 111-2AA66-0AAO	1 unit	on req.
	Ground-fault module				
	GFM A 45B (only for ETU45B) alarm only	B	3WL9 111-2AT51-0AAO	1 unit	on req.
	GFM AT 45B (only for ETU45B) alarm and tripping	B	3WL9 111-2AT53-0AAO	1 unit	on req.
	Display				
	4-line display for ETU45B	B	3WL9 111-1AT81-0AA0	1 unit	on req.
	CubicleBUS modules ${ }^{1}$)				
	Digital output module with rotary coding switch, optical coupler outputs	C	3WL9 111-1AT25-0AAO	1 unit	on req.
	Digital output module with rotary coding switch, relay outputs	C	3WL9 111-1AT26-0AAO	1 unit	on req.
	Digital output module, configurable, optical coupler outputs	C	3WL9 111-1AT30-0AAO	1 unit	on req.
ㅁ 믐ㅁ	Digital output module, configurable, relay outputs	C	3WL9 111-1AT20-0AAO	1 unit	on req.
	Digital input module	C	3WL9 111-1AT27-0AAO	1 unit	on req.
En	Analog output module	C	3WL9 111-1AT23-0AAO	1 unit	on req.
$\square \square$	Zone Selective Interlocking module	C	3WL9 111-1AT21-0AA0	1 unit	on req.
	Tools for configuration, operation, and monitoring				
3WL9 111-1AT23-0AAO	Breaker Data Adapter (BDA) Configuration, control, diagnostics, and test of SENTRON circuit-breakers via local interface; Breaker Data Adapter, connecting cable to SENTRON circuitbreakers for programming device (e.g. notebook); can be run with Internet Explorer with JAVA2 VM	B	3WL9 111-2AT28-0AAO	1 unit	on req.
	BDA Plus Same as BDA, but with additional Ethernet interface for connection to Ethernet/Intranet/Internet	B	3WL9 111-2AT33-0AAO	1 unit	on req.
	Retrofitting and spare parts for communication via PROFIBUS				
	COM15 PROFIBUS module ${ }^{2}$)	C	3WL9 111-1AT65-0AA0	1 unit	on req.
	Breaker status sensor (BSS)	C	3WL9 111-1AT16-0AAO	1 unit	on req.
	Measurement function, without voltage transformer	X	3WL9 111-1AT02-0AAO	1 unit	on req.
	Test devices				
	Manual test device for electronic trip units	D	3WL9 111-2AT31-0AAO	1 unit	on req.

For further mechanical accessories see Pages 5/46 to 5/55.
For tripping characteristics and dimensions as for "Circuit-break-ers/non-automatic circuit-breakers up to 6300 A, SENTRON WL", see Pages 5/57 to 5/67.

1) Every CubicleBUS module is supplied with a factory-fitted 0.2 m cable.
2) Contains a 2 m CubicleBUS cable in addition.

Non-Automatic Circuit-Breakers for DC, up to 4000 A,

SENTRON WL
General data
Technical specifications

$\begin{aligned} & \text { Size } \\ & \text { Type } \\ & \hline \end{aligned}$				II		
				3WL12 10	3WL12 20	3WL12 40
Rated current I_{n} at $40^{\circ} \mathrm{C}$ Main conductor			A	up to 1000	2000	4000
Rated operating voltage U_{e} (1000 V design, see Page 5/37)			DC V	up to 600/1000	up to 600/1000	up to 600/1000
Rated insulation voltage U_{i}			AC V	1000	1000	1000
Rated impulse withstand voltage $\boldsymbol{U}_{\text {imp }}$ Main circuits Auxiliary circuits Control circuits			$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$	$\begin{gathered} 12 \\ 4 \\ 2.5 \end{gathered}$	$\begin{gathered} 12 \\ 4 \\ 2.5 \end{gathered}$	$\begin{gathered} 12 \\ 4 \\ 2.5 \end{gathered}$
Isolating function to EN 60947-2				yes	yes	yes
Permissible ambient temperature Operation Storage			${ }^{\circ} \mathrm{C}$	$\begin{aligned} & -25 /+75 \\ & -40 /+70 \end{aligned}$	$\begin{aligned} & -25 /+75 \\ & -40 /+70 \end{aligned}$	$\begin{aligned} & -25 /+75 \\ & -40 /+70 \end{aligned}$
Permissible load at rear horizontal main circuit connections (Cu painted black)	up to up to up to up to		A	$\begin{aligned} & 1000 \\ & 1000 \\ & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2000 \\ & 2000 \\ & 1950 \end{aligned}$	$\begin{aligned} & 4000 \\ & 3640 \\ & 3500 \\ & 3250 \end{aligned}$
Power loss at I_{n} with AC symmetrical load Withdrawable circuit-breaker			W	280	770	1640
Operating times Make-time Break-time			$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 35 \\ & 34 \end{aligned}$	$\begin{aligned} & 35 \\ & 34 \end{aligned}$	$\begin{aligned} & 35 \\ & 34 \end{aligned}$
Electr. make-time (via closing solenoid) ${ }^{1}$) Electr. break-time (via shunt release)			$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$\begin{array}{r} 100 \\ 73 \end{array}$	$\begin{array}{r} 100 \\ 73 \end{array}$	$\begin{array}{r} 100 \\ 73 \end{array}$
Electr. break-time (instantaneous undervoltage release)			ms	73	73	73
Service life ${ }^{3}$) mechanical (without maintenance) mechanical (with maintenance) ${ }^{2}$) electrical (without maintenance) 1000 V design electrical (with maintenance) ${ }^{2}$)		Oper Oper Oper Oper Oper	cycles cycles cycles cycles cycles	$\begin{array}{r} 10000 \\ 15000 \\ 6000 \\ 1000 \\ 15000 \\ \hline \end{array}$	$\begin{array}{r} 10000 \\ 15000 \\ 6000 \\ 1000 \\ 15000 \\ \hline \end{array}$	$\begin{array}{r} 10000 \\ 15000 \\ 4000 \\ 1000 \\ 15000 \\ \hline \end{array}$
Operating frequency 600 V design 1000 V design			$\begin{aligned} & 1 / \mathrm{h} \\ & 1 / \mathrm{h} \end{aligned}$	$\begin{aligned} & 60 \\ & 20 \end{aligned}$	$\begin{aligned} & 60 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 20 \end{aligned}$
Service position						
Degree of protection				IP20 without cab IP55 with cover	net door, IP30 w	door mounting
```Auxiliary conductors (Cu) Max. no. of auxiliary conductors \(\times\) cross- section (solid/stranded)```	Standard connection = strain-relief clamp without end sleeve with end sleeve to DIN 46228 Part 2 with twin end sleeve optional connection = tension spring without end sleeve with end sleeve to DIN 46228 Part 2					
Weights $\begin{array}{r}3 \text {-pole } \\ 4 \text {-pole }\end{array}$	Fixed Withd Guide Fixed Withd Guide	eaker aker   eaker aker	$\begin{aligned} & \mathrm{kg} \\ & \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 56 \\ & 60 \\ & 31 \\ & 67 \\ & 72 \\ & 37 \end{aligned}$	56 60 31 67 72 37	$\begin{aligned} & 64 \\ & 68 \\ & 45 \\ & 77 \\ & 82 \\ & 54 \end{aligned}$

1) Make-time via closing solenoid for synchronization purposes (short-time excited) 50 ms .
2) Further technical specifications on request.
3) Maintenance means: replace main contact elements and arc chutes (see

Operator's Guide).


1) at $U_{e}=D C 300 \mathrm{~V}$.
2) at $U_{e}=D C 1000 \mathrm{~V}$.
3) at $U_{e}=D C 600 \mathrm{~V}$.

## Non－Automatic Circuit－Breakers for DC，up to 4000 A， SENTRON WL

3－and 4－pole，fixed－mounted design
Selection and ordering data

Size	Max．rated circuit－ breaker current $I_{\mathrm{n} \text { max．}}$ ．   A	3－pole non－automatic circuit－breakers		PS＊	Weight per PU approx． kg	4－pole non－automatic circuit－breakers		PS＊	Weight per PU approx．
			Order				Order		
		DT	Order No．supplements see Page 5／36			DT	Order No．supplements see Page 5／36		kg
Horizontal main circuit connection									
11	1000	B	3WL12 10－8ロロ32－．．．．	1 unit	56.000	B	3WL12 10－8민－．．．．	1 unit	67.000
11	2000	B	3WL12 20－8ロロ32－．．．．	1 unit	56.000	B	3WL12 20－8ロロ42－．．．．	1 unit	67.000
11	$4000{ }^{1}$ ）	B	3WL12 40－8ロロ32－．．．．	1 unit	64.000	B	3WL12 40－8ロロ42－．．．．	1 unit	77.000
Vertical main circuit connection									
11	1000	B	3WL12 10－8ロロ31－．．．．	1 unit	56.000	B	3WL12 10－8ロロ41－．．．．	1 unit	75.000
11	2000	B	3WL12 20－8ロロ31－．．．．	1 unit	56.000	B	3WL12 20－8ロロ41－．．．．	1 unit	75.000
11	$4000{ }^{1}$ ）	B	3WL12 40－8ロロ31－．．．．	1 unit	64.000	B	3WL12 40－8ロロ41－．．．．	1 unit	77.000
Front main circuit connection，single hole									
11	1000	B	3WL12 10－8ロロ33－．．．．	1 unit	56.000	B	3WL12 10－8ロロ43－．．．．	1 unit	67.000
11	2000	B	3WL12 20－8ロロ33－．．．．	1 unit	56.000	B	3WL12 20－8ロロ43－．．．．	1 unit	67.000
Front main circuit connection，double hole									
11	1000	B	3WL12 10－8ロロ34－．．．．	1 unit	56.000	B	3WL12 10－8ロロ44－．．．．	1 unit	67.000
II	2000	B	3WL12 20－8ロロ34－．．．．	1 unit	56.000	B	3WL12 20－8ロロ44－．．．．	1 unit	67.000
Non－automatic circuit－breakers ${ }^{2}$ ）			Order No．supplements				Order No．supplements		
without electronic trip unit			AA				AA		
Standard Order No．supplements（for further Order No．supplements see Page 5／36）									
Manual operating mechanism with			1AA2				1AA2		

Rated voltage DC 1000 V：order with＂－Z＂and order code＂A05＂．
All other accessory parts must be ordered with＂－Z＂and order codes，see＂Circuit－breakers／non－automatic circuit－breakers up to 6300 A，SENTRON WL＂，＂Options＂，Page 5／36 onwards．

1）Provisons to dissipate heat must be made on the line side．
2）For permissible short－time current rating $I_{\mathrm{Cw}}$ and short－circuit switching capacity $I_{\mathrm{cC}}$ for non－automatic circuit－breakers，see Page 5／77．

## Non-Automatic Circuit-Breakers for DC, up to 4000 A,

Size	Max. rated circuitbreaker current $I_{\mathrm{n}}$ max. A	3-pole non-automatic circuit-breakers		PS*	Weight per PU approx.$\mathrm{kg}$	4-pole non-automatic circuit-breakers		PS*	Weight per PU approx.
			Order No.				Order No.		
		DT	Order No. supplements see Page 5/36			DT	Order No. supplements see Page 5/36		kg
Without guide frame (for guide frames see Page 5/80)									
II	1000	B	3WL12 10-8 $\square \square 35-. .$.	1 unit	60.000	B	3WL12 10-8 $\square \square 45-. .$.	1 unit	75.000
11	2000	B	3WL12 20-8 $\square \square 35-. .$.	1 unit	60.000	B	3WL12 20-8 $\square \square 45-. .$.	1 unit	75.000
11	$4000^{1}$ )	B	3WL12 40-8 $\square \square 35-. .$.	1 unit	68.000	B	3WL12 40-8 $\square \square 45-. .$.	1 unit	82.000
With guide frame, horizontal main circuit connection									
II	1000	B	3WL12 10-8 $\square \square 36-. .$.	1 unit	91.000	B	3WL12 10-8 $\square \square 46-. .$.	1 unit	109.000
11	2000	B	3WL12 20-8 $\square \square 36-. .$.	1 unit	91.000	B	3WL12 20-8 $\square \square 46-. .$.	1 unit	109.000
11	$4000^{1}$ )	B	3WL12 40-8 $\square \square 36-. .$.	1 unit	113.000	B	3WL12 40-8 $\square \square 46-. .$.	1 unit	136.000
With guide frame, vertical main circuit connection									
II	1000	B	3WL12 10-8 $\square \square 37-. .$.	1 unit	91.000	B	3WL12 10-8 $\square \square 47-. .$.	1 unit	109.000
11	2000	B	3WL12 20-8 $\square \square 37-\ldots$.	1 unit	91.000	B	3WL12 20-8 $\square \square 47-. .$.	1 unit	109.000
11	$400{ }^{1}$ )	B	3WL12 40-8 $\square \square 37-\ldots$.	1 unit	113.000	B	3WL12 40-8 $\square \square 47-. .$.	1 unit	136.000
With guide frame, connecting flange									
II	1000	B	3WL12 10-8 $\square \square 38-\ldots$.	1 unit	91.000	B	3WL12 10-8 $\square$ [48-....	1 unit	109.000
11	2000	B	3WL12 20-8 $\square \square 38-\ldots$.	1 unit	91.000	B	3WL12 20-8 $\square \square 48-. .$.	1 unit	109.000
11	4000 ${ }^{1}$ )	B	3WL12 40-8 $\square \square 38-. .$.	1 unit	113.000	B	3WL12 40-8 $\square \square 48-. .$.	1 unit	136.000
Non-automatic circuit-breakers ${ }^{2}$ ) without electronic trip unit			Order No. supplements				Order No. supplements		
			AA				AA		

Standard Order No. supplements (for further Order No. supplements see Page 5/36)
Manual operating mechanism with
1AA2
1AA2
mechanical closing
Rated voltage DC 1000 V: order with "-Z" and order code "A05".
All other accessory parts must be ordered with "-Z" and order codes, see "Circuit-breakers/non-automatic circuit-breakers up to 6300 A, SENTRON WL", "Options", Page 5/36 onwards.

1) Provisons to dissipate heat must be made on the line side.
2) For permissible short-time current rating $I_{\mathrm{Cw}}$ and short-circuit switching capacity $I_{\mathrm{CC}}$ for non-automatic circuit-breakers, see Page 5/77.

## Non－Automatic Circuit－Breakers for DC，up to 4000 A， SENTRON WL

Accessories／spare parts

## Selection and ordering data

Guide frames for DC non－automatic circuit－breakers

Size	Max．rated circuit－ breaker current $I_{\mathrm{n} \text { max }}$		Guide frame for 3－pole non－automatic circuit－breakers	PS＊	Weight per PU approx．		Guide frame for 4－pole non－automatic circuit－breakers	PS＊	Weight per PU approx．
	A	DT	Order No． （Order No．supplements required according to table below）		kg	DT	Order No． （Order No．supplements required according to table below）		kg
Front main circuit connection，single hole									
II	2000	B	3WL9 212－3DAロロ－ロロA 1	1 unit	31.000	B	3WL9 212－3EAロロ－ロロA 1	1 unit	37.000
Front main circuit connection，double hole									
11	2000	B	3WL9 212－3DBロロ－ロロA 1	1 unit	31.000	B	3WL9 212－3EBロロ－ロロA 1	1 unit	37.000
Horizontal main circuit connection									
$\begin{aligned} & \text { II } \\ & \text { ॥ } \end{aligned}$	$\begin{aligned} & 2000 \\ & 4000 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	3WL9 212－3DCDロ－ロロA 1 3WL9 212－6DCㅁㅁ－ㅁA 1	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & 31.000 \\ & 60.000 \end{aligned}$	$\begin{aligned} & B \\ & B \end{aligned}$	3WL9 212－3ECㅁ－ロロA 1 3WL9 212－6ECロロ－ロロA 1	1 unit 1 unit	$\begin{aligned} & 37.000 \\ & 84.000 \end{aligned}$
Vertical main circuit connection									
$\begin{aligned} & \text { II } \\ & \text { ॥ } \end{aligned}$	$\begin{aligned} & 2000 \\ & 4000 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	3WL9 212－3DDロロ－ロロA 1 3WL9 212－6DDㅁㅁ－ロपA 1	1 unit 1 unit	$\begin{aligned} & 31.000 \\ & 60.000 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	3WL9 212－3EDロロ－ロロA 1 3WL9 212－6EDロロ－ロロA 1	1 unit 1 unit	$\begin{aligned} & 37.000 \\ & 84.000 \end{aligned}$
Main circuit connection connecting flange									
	$\begin{aligned} & 2000 \\ & 4000 \end{aligned}$	B	3WL9 212－3DEㅁㅁ－ㅁㅁ 1   3WL9 212－6DEDㅁ－प 1	1 unit 1 unit	$\begin{aligned} & 31.000 \\ & 60.000 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { B } \end{aligned}$	3WL9 212－3EEロロ－पロA 1 3WL9 212－6EEDロ－ロロA 1	1 unit 1 unit	$\begin{aligned} & 37.000 \\ & 84.000 \end{aligned}$
Number of auxiliary supply connectors									
none   1 con   2 con   3 con   4 con   For rea   conn	ber of auxiliary supply table on Page 5／44		$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$				0 1 2 3 4		
Type of auxiliary circuit connections									
witho with with	－type terminals g connection		$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$				0 1 2		
Posit	or switches		0				0		
Optio   oper test disco	geover，   r， hangeover		1				1		
Optio oper test 2 disco	geover，   r， hangeover		2				2		
Shutters									
with	rts，lockable		B				B		

Rated voltage DC 1000 V：order with＂$-Z$＂and order code＂A05＂
All other accessory parts must be ordered with＂$-Z$＂and order codes，see＂Circuit－breakers／non－automatic circuit－breakers up to 6300 A，SENTRON WL＂，＂Options＂，Page 5／39 onwards．

## Non-Automatic Circuit-Breakers for DC, up to 4000 A,

## Circuit diagrams

## Examples of application

Rated operating   voltage
Required series to $300 \mathrm{~V}+10 \%$
breaks at rated voltage
:---
Operating currents up to 4000 Al
conducting path

The connection to the circuit-breakers is not dependent on direction and polarity; the circuit diagrams can be adapted accordingly.
If the parallel or series connections are made directly to the connecting bars, for thermal reasons the continuous load on the circuit-breakers must only be $80 \%$ of the permissible operating current. If the parallel or series connection is made at a distance of 1 m from the connecting bars, the circuit-breaker can be used at full operating current load.
-lll grounded neutral system
$\square$

## load

Dimensions as for "Circuit-breakers/non-automatic circuit-breakers up to 6300 A, SENTRON WL", Pages $5 / 60$ to 5/67.

## Circuit-Breakers up to 3200 A, Discontinued Series

## General data

## Overview



1 Withdrawable circuit-breaker
2 Indication and reset button after tripping for

- tripped signaling switch and
- mechanical closing lockout

Spring charge indicator
Contact position indicator
5 Ready-to-close indicator

6 ON button, mechanical with sealing cap
7 OFF button, mechanical
8 ON button, electrical
9 Electronic trip unit
10 Indication of switch position
11 Guide frame


12 Guide rails
13 Auxiliary circuit plug-in system
14 Crank hole
15 Hand lever
16 Position indicator switch
17 Transparent cover

Left: 3WN6 circuit-breaker, withdrawable version, size I, 3-pole
Right: 3WN6 circuit-breaker, fixed-mounted version, size I, 3-pole


Motorized operating mechanism


Electronic trip unit

## Benefits

## Safety and reliability

- High degree of protection with door sealing frame in the case of exclusively local operation of the circuit-breaker
- Incoming supply from above or below, as required
- Locking of the withdrawable circuit-breaker against moving, as standard
- Locking of the guide frame with the circuit-breaker removed, as standard
- Alarm switch for overload and short-circuit tripping with mechanical closing lockout


## Easy to operate

- Unambiguous ON-OFF indicator with auxiliary switch for signal
- Ready-to-close indicator with alarm switch as safety standard.


## Modular

Many components, such as auxiliary releases, motorized operating mechanisms, electronic trip units and current transformers can be replaced or retrofitted to adapt the circuit-breaker to changing requirements.

## Communication-capable (see illustration "Communication via PROFIBUS DP")

The international standard PROFIBUS DP can be used to transmit data such as current values, switching states, reasons for tripping etc. to central computers. This makes it possible not only to monitor the circuit-breakers but also to operate them remotely.
This supports energy management and significant savings in energy costs.
For further information see also section "Communication-capable circuit-breakers".

## Minimal power loss and therefore low energy consumption

The low power consumption of the electrical components also saves money when it comes to purchasing the control-power transformers. Where space is at a premium or ventilation is limited.

## Area of application

## Specifications

IEC 60947-2, DIN VDE 0660 Part 101, climate-proof to IEC 68 Part 2-30
Approval according to maritime classification
see "Annex".

## Operating conditions

The 3WN6 circuit-breakers are climate-proof in accordance with DIN IEC 68 Part 2-30.
They are intended for use in enclosed areas where no severe operating conditions (e.g. dust, corrosive vapors, damaging gases) are present.
When installed in dusty or damp areas, suitable enclosures must be provided. If damaging gases (e.g. hydrogen sulfide) are present in the surrounding air, sufficient incoming fresh air must be supplied.
The permissible ambient temperatures and the associated rated currents are listed in the technical specifications.

## Design

## Versions

Breaking capacity: 65/80 kA
Rated current: 630 to 3200 A
Rated operating voltage: AC 690 V
The 3WN6 circuit-breakers are supplied complete with an operating mechanism, electronic trip unit and auxiliary switches and are fitted with auxiliary releases.
The non-automatic circuit-breakers are supplied without electronic trip unit

## Basic configuration

- Electronic trip unit for overload protection and short-circuit protection, short-circuit releases also delayed for time-based discrimination, with LEDs for the cause of tripping, LED status indicator, query and test button
- Mechanical closing lockout
- "Tripped" switch
- Ready-to-close indicator with alarm switch
- Auxiliary supply connector: The circuit-breaker is equipped with the required number of connectors
- Rear horizontal connection of the main conductors

Operating mechanisms (see illustration "Motorized operating mechanism")
The circuit-breakers are available with various optional operating mechanisms:

- Manual operating mechanism with memory, with mechanical closing
- Manual operating mechanism with mechanical and electrical closing
- Motorized operating mechanism that can also be operated manually, with mechanical and electrical closing.
The operating mechanisms with electrical closing can be used for synchronization tasks.


## Electronic trip units (see illustration "Electronic trip unit")

The electronic trip unit is controlled by a microprocessor and operates independently of an external voltage. It enables systems to be adapted to the different protection requirements of distribution systems, motors, transformers and generators.
When the circuit-breakers are used in IT networks that are not grounded with converters connected in parallel to a common DC link rail, suitable filter measures must be taken. Please address any questions to your regional Siemens contact. For more information on electronic trip units see "Electronic trip units" and "Functions", "Electronic trip units - General description".

## EMERGENCY-STOP facility

The 3WN6 circuit-breakers can be used as an EMERGENCYSTOP facility to DIN VDE 0113 if the circuit-breaker is equipped with an undervoltage release and is used in conjunction with an EMERGENCY-STOP control device.

## Auxiliary and alarm switches

- Ready-to-close

If all the conditions are fulfilled, so that the circuit-breaker is ready to close, this is indicated visually on the operator panel as well as by means of an indicator switch (S7).

- Contact position-independent auxiliary switches

The circuit-breakers are supplied with 2 NO and 2 NC contacts or with 2 NO and 2 NC and 2 CO contacts according to order.

## Circuit-Breakers up to 3200 A, Discontinued Series

## General data



- "Tripped" switch and mechanical closing lockout As standard, the circuit-breaker is equipped with an S11 alarm switch and a mechanical closing lockout for the common overload and short-circuit signal and, depending on the setting and version of the electronic trip unit, the ground-fault signal. The tripped signal and the standard mechanical mechanism to prevent closing remain active until the reset button is operated on the circuit-breaker. When the circuit-breaker has tripped, this is indicated by the protruding reset button. If the circuit-breaker has to be ready to close immediately after tripping, an automatic mechanical reset mechanism is available, but this does not reset the electrical signal from the "tripped" switch S11. The "tripped" signal then has to be reset by operating the Reset button.
The electronic trip unit offers a further option to display the cause for tripping (see trip unit, under "Functions", "Electronic trip unit - General description").


## Fixed-mounted and withdrawable version

## Fixed-mounted and withdrawable circuit-breakers

- Protective measures against arcing gases

For 3WN6 circuit-breakers with voltages up to AC 415 V , screening from vertical busbars is not necessary. In the case of voltages up to AC 690 V , the arc chute cover (accessory) can be used to protect against flashover. Electrical add-on devices on the side of the circuit-breaker must be separately covered. Also see notes under "Project planning aids", "Dimension drawings".

- Operator panel

The operator panel is designed to protrude from a cutout in the door providing access to all operator controls and displays with the door closed.

- Door sealing frame

The door sealing frame seals the cabinet door with the operator panel. With the cabinet door closed, the IP degree of protection is achieved for the circuit-breaker.

## Withdrawable circuit-breaker

The withdrawable version comprises a withdrawable circuitbreaker, a guide frame and a hand crank for moving the withdrawable circuit-breaker. The guide frames are fitted with guide rails as standard for easy handling of the withdrawable circuitbreaker.

- Auxiliary supply connections

The auxiliary supply connections make contact automatically when the circuit-breaker slides into the guide frame (test position, connected position).

- Switch positions in the guide frame The withdrawable version has three switch positions in the switchgear cabinet behind the cabinet door:
- Connected position
(main circuit and auxiliary circuit ready)
- Test position
(main circuit disconnected, auxiliary circuit ready)
- Disconnected position
(main circuit and auxiliary circuit disconnected)
In the disconnected position, the withdrawable circuit-breaker complies with the "isolation condition" with a visible isolating distance in the main circuit and auxiliary circuit.
The circuit-breaker must always be switched off before it is moved. The "OFF" button must be held down when the slide in the crank hole is opened.


# Circuit-Breakers up to 3200 A, Discontinued Series 

## Guide frames

Closing of the crank hole is only possible in the circuit-breaker positions (connected, test or disconnected position). The circuitbreaker position is shown on a display on the circuit-breaker.
The circuit-breaker is moved with the help of a hand crank. The connected position as well as the disconnected position is achieved by moving the circuit-breaker to the end stop.

- Position indicator switches

The position indicator switches are operated by the withdrawable circuit-breaker via an additional mechanical device. Apart from indicating the position, they also indicate that the circuitbreaker is present in the guide frame. This version is suitable for interlock circuits including other protective devices.

- Shutters

Inadvertent touching of live main contacts or busbars is prevented by covering with a shutter. The shutter is constructed in two parts and allows the upper or lower connection areas to be opened separately for the purpose of checking that they are not live. The divided shutter can be interlocked in the open or closed position and two padlocks can be fitted.

- Coding unit

To prevent circuit-breakers of the same size but of different designs being mixed up in a switchgear cabinet, the withdrawable circuit-breakers and guide frames can be equipped with a coding device. The coding device provides coding protection for up to 35 circuit-breakers
The circuit-breakers in the withdrawable version are factoryfitted with a rated current coding as standard.
This prevents a withdrawable circuit-breaker being used in a guide frame that has a different rated current.

- Blocking mechanisms

Fixed-mounted circuit-breakers:
To protect the operating personnel and the switchgear, the fixed-mounted circuit-breakers can be fitted with a locking mechanism that prevents the switchgear cabinet door being opened when the circuit-breaker is closed.
Withdrawable version:
For the protection of the operating personnel and the switchgear, the withdrawable versions can be equipped with the following locking devices:

- Blocking device to prevent opening of the cabinet door, active in the connected position.
- Blocking device to prevent closing with the cabinet door open, active in the connected position.
- Blocking mechanism against movement with the cabinet door open
If the cabinet door is opened, the manual crank used to move the circuit-breaker cannot be positioned.
- Blocking mechanism against insertion of the withdrawable circuit-breaker
The guide rails can be interlocked with one slide each and locked with two padlocks.
- Blocking mechanism against moving the withdrawable circuitbreaker
A padlock prevents access to the crank hole and application of the crank (max. shackle diameter: 8 mm ; possible with all versions) or the same can be achieved with an additionally available safety lock (see "Functions", "Opening, closing and locking devices").


Main circuit connections


Guide frame


Locking device to prevent insertion of the withdrawable circuit-breaker

## Circuit-Breakers up to 3200 A, Discontinued Series

## General data

## Electronic trip units



Electronic trip unit version B "azn"


Electronic trip unit version J/K "aznNg"


Electronic trip unit version E/F "aznNg"


Electronic trip unit version P "aznNg"
Electronic trip unit version N "aznN" without ground-fault release

# Circuit-Breakers up to 3200 A, Discontinued Series 

## Functions

## Electronic trip units - General description

The new generation of solid-state microprocessor-based electronic trip units
Overload protection ("a")
Inverse-time delayed overload release for overload protection of load feeders and cables.


Selective short-circuit delayed short-circuit protection ("z")


Instantaneous short-circuit protection ("n")


Ground-fault protection ("g")
For sensing of fault currents that flow to ground and that can cause fire in the plant.



Electronic trip units - versions B and N
In all electronic trip units, the following functions are included as standard:

- Integrated function test

The test button can be used to test the electronic trip unit using an integrated test function with or without tripping of the circuit-breaker (the solid-state trip unit, trip solenoid and breaker mechanism are tested).

- Active LED

Correct operation of the electronic trip unit is indicated by the "heartbeat" of a green flashing LED.
When the operating current exceeds the response threshold of the overload protection, this is indicated by rapid flashing.

- Cause of tripping

The cause of tripping can be queried locally and displayed (by pressing the "Query" button).

- $\mu \mathrm{P}$ faults

A microprocessor fault is signaled by a warning indicator (also optionally via an optocoupler as well).

- Overtemperature

If the temperature in the electronic trip unit exceeds $85^{\circ} \mathrm{C}$, this is indicated by an LED (also optionally via an optocoupler).


Indication on electronic trip unit version N

## Circuit-Breakers up to 3200 A, Discontinued Series

## General data

Comprehensive additional functions - in accordance with the design of the electronic trip unit, e.g.:


- Short time-delay short-circuit release with $I^{2} \mathrm{t}$-dependent delay for improved discrimination to the downstream fuses
- Short-circuit protection with "Zone Selective Interlocking" for significant reduction of the stress and damage in a distribution system thanks to short delay times.
- Load shedding/load receiving
- Communication via PROFIBUS DP
- LCD operating current display


## Ground-fault protection

- Description Ground-fault releases " g " sense fault currents that flow to ground and that can cause fire in the plant. Multiple circuitbreakers connected in series can have their delay times adjusted so as to provide graduated discrimination.
When setting the parameters for the electronic trip unit it is possible to choose between "Alarm on detection" and "Trip circuitbreaker on detection".
The reason for tripping is indicated by means of an LED when the query button is activated.
- Measurement methods
- Vectorial summation formation with current transformer in neutral conductor
The neutral conductor current is measured directly and is evaluated for neutral conductor overload protection
The electronic trip unit determines the ground-fault current by means of vectorial summation current formation for the three phase currents and the N -conductor current.


Three-pole circuit-breakers, current transformers in the neutral conductor

Electronic trip unit version	Current transformer T5 must be con-   nected to auxiliary current connec-   tion
- C, D, E, H, J	400.13
- N, P	400.14
	300.1
300.2	

For 4-pole circuit-breakers, the fourth current transformer for the N -conductor is installed internally, for the electronic trip unit version $E$ and $J$ it must be mounted externally to the incoming or outgoing feeder side.

Electronic trip unit version	Current transformer T5 must be   connected to auxiliary current   connection
- E, J	400.13
	400.14

- Direct acquisition of the ground-fault current by means of a current transformer in the grounded neutral point of the trans former. The current transformer is installed directly into the grounded neutral point of the transformer.


Three-pole circuit-breakers, current transformers in the grounded neutral point of the transformer.

Electronic trip unit version	Current transformer T6 must be con-   nected to auxiliary current connec-   tion
- C, E, J, P	400.13
	400.14



Four-pole circuit-breakers, current transformers in the grounded neutral point of the transformer (connection as for three-pole circuit-breakers)

## Additional functions 1

- External DC 24 V supply e.g. for parameterization (i.e. setting the protection parameters and additional functions), activation of operating current indication (version $D, E / F, H, J / K, N / P$ ) if no load current is flowing in the main circuits.
- $\mu$ P-fault

The alarm LED is activated for all versions if the microprocessor is faulty. For the additional functions 1 and 2, a signal can also be issued via the optical coupler. The circuit-breaker is not tripped in this case. However, the protection function is secured by means of a redundant bypass.

- Temperature alarm If the temperature in the electronic trip unit exceeds the limit value of $85^{\circ} \mathrm{C}$, this is indicated by means of an LED. For the additional functions 1 and 2 , a signal can also be issued via the optical coupler.


## Additional functions 2

- External DC 24 V power supply (see additional functions 1)
- $\mu \mathrm{P}$ fault (see additional functions 1)
- Temperature alarm (see additional functions 1)
- Leading signal "a" trip

The leading signal (via optical coupler) for the overload trip is used to deactivate the downstream thyristor control devices. The overload tripping operation is then performed after 200 ms .

## Circuit-Breakers up to 3200 A, Discontinued Series

- Load monitoring

Load monitoring is adjustable via two selectable operating values for load receiving and load shedding (IAW1, IAW2) and a common delay time (td, AW).

- "g" alarm

Signal via optical coupler on ground fault

- Zone Selective Interlocking
(see short-circuit protection with Zone Selective Interlocking "ZSI").


## Hand-held device

- Description

The hand-held device is connected to the electronic trip unit by means of a connecting lead and a snap-on power supply adapter. A DC 24 V power supply can be connected to the adapter to activate the trip unit. This hand-held device can also be used for the communication-capable motor protection and control device 3UF5 (SIMOCODE-DP) for configuration and operation.

- Functions

Reading and writing the protection parameters for electronic trip unit versions $H, J / K, N$, and $P$.
Connecting and setting operating values for the additional functions of the electronic trip unit versions D, E/F, H, J/K, N, and $P$.
The settings read out from the trip unit can be temporarily stored in the hand-held device and written to a different electronic trip unit.


[^7]
## General data

## Short-circuit protection with Zone Selective Interlocking

The Zone Selective Interlocking function permits full discrimination for the very short delay time of $\mathrm{t}_{\text {zsi }}=50 \mathrm{~ms}$ regardless of the number of staggered levels and location of the short-circuit in the distribution system.
Reduction of the break time reduces the stress and damage that can occur in a distribution system considerably.
If the Zone Selective Interlocking function is set and a short-circuit occurs, every circuit-breaker through which the short-circuit flows interrogates the next circuit-breaker immediately downstream for presence of the short-circuit current in the next lower staggered level.


## Circuit-Breakers up to 3200 A, Discontinued Series

## General data

## Functional overview of the electronic trip unit system



# Circuit-Breakers up to 3200 A, Discontinued Series 

General data

Electronic trip unit version ( $\widehat{=10 \text { th pos }}$ of Order No.)	V "zn"	B "azn"	C/G "aznNg"	D "aznN"	E/F "aznNg"	H "aznN" 7	J/K "aznNg"   7	N "aznN"	P "aznNg"
		$\bullet$	$\bullet$	$\bullet$	$\bullet$	-	$\bullet$	-	-
		$10 \mathrm{~s}^{3}$ )	$10 \mathrm{~s}^{3}$ )	2-30 s					
				-	-	-	-q	-	-
		$\times$	$\triangle$	$\triangle$	$\triangle$	$\bullet$	-	$\bullet$	-
			$\begin{aligned} & 50 \text { or } \\ & 100 \% \end{aligned}$	$\begin{aligned} & 50 \text { or } \\ & 100 \% \end{aligned}$	$\begin{aligned} & 50 \text { or } \\ & 100 \% \end{aligned}$	20-100 \%	20-100 \%	20-100 \%	20-100 \%
	$\begin{aligned} & \begin{array}{l} 1.25-12 \times I_{r} \\ I_{r}=40-100 \end{array} \% I_{n} \end{aligned}$	$1.5-12 \times I_{r}$	$1.25-12 \times I_{r}$	$1.25-12 \times I_{\text {r }}$	$1.25-12 \times I_{r}$	$0.5-12 \times I_{\text {n }}$	$0.5-12 \times I_{n}$	$1.25 \times I_{\text {r }}-40 \mathrm{kA}$	$1.25 \times I_{\mathrm{r}}-40 \mathrm{kA}$
	0; 20-500 ms	0; 20-400 ms	0; 20-400 ms	$20-400 \mathrm{~ms}$	20-400 ms	20-4000 $\mathrm{ms}^{4}$ )	$20-4000 \mathrm{~ms}^{4}$ )	$20-400 \mathrm{~ms}$	$20-400 \mathrm{~ms}$
				$80-300 \mathrm{~ms}$	80-300 ms				
	$>15 \times I_{n}$	$>15 \times I_{n}$	$>15 \times I_{n}$	$>1.5-12 \times I_{n}$ and $I_{\mathrm{i}}=\infty$ with setting $I_{\mathrm{i}}=\infty$ then $I_{\mathrm{cu}}=I_{\mathrm{cs}}=I_{\mathrm{cW}}$ (lowest value decisive)	$>1.5-12 \times I_{n}$   with $I_{i}=\infty$   with setting $I_{\mathrm{i}}=\infty$ then $I_{\mathrm{cu}}=I_{\mathrm{cs}}=I_{\mathrm{cw}}$ (lowest value decisive)	$>1.5-12 \times I_{n}$ with $I_{\mathrm{i}}=\infty$ with setting $I_{i}=\infty$ then $I_{\mathrm{cu}}=I_{\mathrm{cs}}=I_{\mathrm{cw}}$ (lowest value decisive)	$>1.5-12 \times I_{n}$   with $I_{\mathrm{i}}=\infty$ with setting $I_{\mathrm{i}}=\infty$ then $I_{\mathrm{cu}}=I_{\mathrm{cs}}=I_{\mathrm{cw}}$ (lowest value decisive)	Size I: up to 50 kA Size II: up to 65 kA	Size I: up to 50 kA Size II: up to 65 kA
			$0.2-0.6 \times I_{n}$		$0.2-0.6 \times I_{n}$		$\begin{aligned} & 20 \% I_{\mathrm{n}} \\ & \text { up to } 1200 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 20 \% I_{\mathrm{n}} \\ & \text { up to } 1200 \mathrm{~A} \\ & \hline \end{aligned}$
			$100-500 \mathrm{~ms}$		$100-500 \mathrm{~ms}$		$100-500 \mathrm{~ms}$		$100-500 \mathrm{~ms}$
					$100-500 \mathrm{~ms}$		$100-500 \mathrm{~ms}$		$100-500 \mathrm{~ms}$
				$\bullet$	$\bullet$			$\bigcirc$	$\bullet$
	-	$\bullet$	-	$\bullet$	-	-	-	$\bullet$	-
		-	-	-	-	-	-	-	-
	-	$\bullet$	-						
				$\bullet$	$\bullet$	-	-	$\bullet$	-
				$\bullet$	-	$\bullet$	$\bullet$	$\bullet$	-
			-	-	-	-	-	-	-
			-		-		$\bullet$	-	
	-	$\bullet$	-	$\bullet$	-	-	-	-	-
								-	-
								$\bullet$	-
				- -	- -	- -	- -	-	-
	-	-	-	$\bullet$	-	$\bullet$	$\bullet$	-	-
	$\bigcirc$	$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bullet$	$\bigcirc$	$\bigcirc$
	-	-	-	$\bullet$	$\bigcirc$	-	$\bigcirc$	-	-
	-	-	-	$\bullet$	$\bullet$	-	-	-	-
				$\triangle$	$\triangle$	$\Delta$	$\triangle$	-	$\bigcirc$
				$\triangle$	$\triangle$	$\Delta$	$\triangle$	$\triangle$	$\triangle$
				$\stackrel{\Delta}{\Delta}$	$\Delta$	$\stackrel{\Delta}{\Delta}$	$\Delta$	$\stackrel{\Delta}{\Delta}$	$\Delta$
				$\triangle$	$\triangle$	$\triangle$	$\triangle$	$\bullet$	$\bullet$
				$\Delta$	$\triangle$	$\triangle$	$\triangle$	$\triangle$	$\triangle$
				$\Delta$	$\begin{aligned} & \times \\ & \Delta \\ & \square \end{aligned}$	$\begin{aligned} & \times \\ & \times \square \\ & \square \end{aligned}$	$\begin{aligned} & \times \\ & \times \\ & \hline \end{aligned}$	$\begin{aligned} & \times \\ & \times \\ & \times \end{aligned}$	$\Delta$
				$\Delta \square$	$\times \square$	- $\square$	$\triangle \square$	$\triangle$	$\triangle$
				$\Delta \square$	$\triangle \square$	$\triangle \square$	$\triangle \square$	$\Delta$	$\triangle$
					$\triangle$		$\triangle$		$\triangle$
				$\Delta$	$\Delta$	$\Delta$	$\Delta$	$\Delta$	A
				$\triangle$	$\triangle$	$\triangle$	$\triangle$	$\triangle$	$\triangle$
								$\triangle$	-

2) " $g$ " release occurs with "Trip" setting on the electronic trip unit.
3) Where there is heavy starting of motors, the time setting $T_{C}=10 \mathrm{~s}$ may not be sufficient: use version D, E/F, H, J/K or P.
4) For $t_{\mathrm{d}}>500 \mathrm{~ms}: I_{\mathrm{CU}}=I_{\mathrm{CW}}=I_{\mathrm{CS}}$ (lowest value decisive) and $I_{\mathrm{d}}$ automatically limited to 15 kA .

Function available as standard

- Function optional (additional cost)
- Deselect/set function with hand-held device Function active when $t_{d}$ is set to 20 ms
$\times$ Available with electronic trip unit B only from date of manufacture 02.96


## Circuit-Breakers up to 3200 A, Discontinued Series

## General data

## Communication module (Z = F01)

- The electronic trip units are internally equipped with an additional communication module for communication via PROFIBUS DP (in this case please use the prefix $Z$ with the Order Number i.e. Z=F01). The data are transferred over a 3 m plug-in connection (included in scope of supply) to an external DP/3WN6 interface. This converts the data for PROFIBUS DP. The following useful data are available depending on the version and accessories of the circuit-breaker:
- Analog measured values:

Phase currents $I_{\mathrm{L} 1}, I_{\mathrm{L} 2}, I_{\mathrm{L} 3}, I_{\text {max }}$ and $I_{\text {min }}$,
N -conductor current $I_{\mathrm{N}}$
Ground-fault current $I_{\mathrm{g}}$

- Event signals:

Type of previous tripping operation (a, z, n, g, N), $\mu \mathrm{P}$ fault,
temperature alarm,
phase symmetry, load shedding, load receiving, overload

- Operating states: Switch on/off, ready indication, status of the voltage/undercurrent release, storage spring loaded, position (test and connected position) of the withdrawable circuit-breaker, test of the electronic trip unit
- Remote configuration
- Read out configuration data:

Settings for the protection functions

- Rated current for the circuit-breaker, number of poles,
identification code for circuit-breaker
- Diagnostics data:

Average current for previous fifteen minutes

- Remote control:

To open and close the circuit-breaker provided that it is equipped with electrical querying and a shunt release.

- Remote configuration

The additional functions and protection functions can be set via the bus. The electronic trip unit checks whether the values for the protection parameters are valid and within range.

## Measurement module (Z = F05)

The electronic trip unit versions N and P can be also be equipped with a measurement module (please quote the following Order No. when ordering: $\mathrm{Z}=\mathrm{F} 05$ instead of $\mathrm{Z}=\mathrm{F} 01$ ). The measurement module consists of the communication module with additional measurement functions and external voltage transformers. In this way, the voltage and frequency are acquired in addition to the current values, which makes the following additional operating values available:

- Voltage $U_{\text {actL }}, U_{\text {maxL }}, U_{\text {minL }}$
(15-minute value for max. and min.)
$U_{\text {LL1 }}, U_{\text {LL2 }}, U_{\text {LL3 }}$ (conductor/conductor voltage)
- Frequency $f_{\text {act }}, f_{\text {max }}, f_{\text {min }}$
(15-minute value for max. and min.)
- Power factor
- Active power $P$
- Reactive power $Q$
- Apparent power $S$
- Active work W
- Direction of phase rotation.

These values can be used for energy management by switching loads on/off to avoid expensive load peaks.

The following signal and protection functions for tripping are available:

- Asymmetrical phase for voltage and current
- Undercurrent/overcurrent
- Underfrequency/overfrequency
- Reversed flow of energy

The data can also be displayed locally by the electronic trip unit. The voltage transformers for the measurement module must be mounted externally. They are mounted on a 35 mm mounting rail. The voltage transformers are included in the scope of supply of the measurement module.

The measurement module cannot be retrofitted.

## Opening, closing and locking devices

- ON and OFF buttons
- Mechanical ON button

In the standard version, the mechanical ON button is a pushbutton. In operating mechanisms with electrical closing, the mechanical ON button is fitted with a sealing cap. As an alternative to a pushbutton, a safety lock (CES, BKS, IKON) can also be supplied.
If the key is removed in the " 0 " position, it is no longer possible to close the circuit-breaker mechanically.

- "Electrical ON" button

The "electrical ON" button is intended for normal activation during service. External electrical interlocks can be implemented easily using the "electrical ON" button. A sealing cap is available for the "electrical ON" button.

- Mechanical OFF button

In the standard version, the mechanical OFF button is a pushbutton. An additional sealing cap secures the button against unauthorized operation.

As an alternative to the OFF button, the following are available:

## - Safety lock

The key can be removed in the OFF position to ensure that the circuit-breaker cannot be closed mechanically. The same key can then be used to unlock another circuit-breaker.

- EMERGENCY-STOP button

This mushroom button latches in the OFF position when it is pressed and prevents the circuit-breaker closing until the latching is reset by rotating the mushroom button.

- Locking device against closing

A flap of the locking device covers the "electrical ON" button and continuously depresses the "mechanical OFF" button. The locking device can be secured with up to 4 padlocks.

# Circuit-Breakers up to 3200 A, Discontinued Series 

- CASTELL, FORTRESS or KIRK-KEY lock

These locking devices are supplied with a mounting set. The lock must be ordered from the manufacturer of the locks. When the lock is activated, the circuit-breaker is locked against closing.
The disconnection condition is fulfilled in the OFF position. An additional access block with a flap for CASTELL, FORTRESS and KIRK-KEY locks prevents insertion of the key. This device can be locked with up to four padlocks.

- Locking device against moving the withdrawable circuitbreaker
Access to the crank hole and application of the crank is prevented by means of one or more padlocks. An additional safety lock which can be supplied on request also prevents access to the crank hole in position I (key can be removed). This also prevents movement of the withdrawable circuit-breaker in the guide frame.
- Locking device in the cabinet door

A safety lock which is fixed to the cabinet door prevents the circuit-breaker from closing. Interlocking is only effective in the connected position in the case of withdrawable circuit-breakers. The signal is transmitted via a Bowden wire. For locking mechanisms please refer to "Installation", "Guide frames".

- Transparent cover over electronic trip unit The standard transparent cover can be sealed. The configuration sections are covered to prevent unauthorized access. Openings allow access to the query and test button. A hinged flap covers the whole operator panel of the electronic trip unit.
- Motor switch

An additional motor switch can deactivate automatic loading of the storage spring on closing. This means that the control supply does not need to be switched off for maintenance measures to the circuit-breaker.

- Operating cycles counter

A five-digit operating cycles counter is available for the 3WN6 circuit-breakers. The display is incremented by "1" as soon as the storage spring is fully loaded.

- Auxiliary release

Up to two auxiliary releases can be installed at the same time. The following are available:
1 shunt release
or 1 undervoltage release
or 2 shunt releases
or 1 shunt release

+ 1 undervoltage release
The shunt release "f" has been designed for permanent excitation. This means that it is also possible to block the circuitbreaker against being jogged into closing.
An energy storage device for shunt releases allows the circuitbreaker to be opened even if the control voltage is no longer available.
The undervoltage release "r" is available without delay as standard (jumper-selectable to 100 ms by customer). In addition, the undervoltage release "rc" with a delay in the range from 0.2 to 3.2 s is available.
For further information on the selection, ordering and project engineering of communication-capable circuit-breakers, refer to section 3 "Communication-capable circuit-breakers" and the manual "Communication links for 3VF, 3WN6, 3WN1/3WS1 circuit-breakers to PROFIBUS DP"
Order No. E20001-P285-A644-V1.


1 Operating cycles counter
2 Transparent cover over electronic trip unit
3 Motor switch
4 Sealing cap for mechanical ON button
5 EMERGENCY-STOP button instead of the OFF button
6 Safety lock to prevent opening of the crank hole
7 Padlock to prevent opening of the crank hole
8 Safety lock instead of the mechanical ON button
9 Locking device for mechanical OFF button and electrical ON button
10 Installation location for CASTELL, FORTRESS, or KIRK-KEY lock
Opening, closing and locking devices


Undervoltage release "rc" with delay for mounting
in 3WN6 circuit-breaker

## Circuit-Breakers up to 3200 A, Discontinued Series

## General data

## Module for mutual mechanical interlocking

The module for mutual mechanical interlocking can be used for one or two 3WN6 circuit-breakers and can be adapted easily to the corresponding versions.
The fixed-mounted and withdrawable circuit-breaker versions are fully compatible and can therefore be used in a mixed configuration in an installation.
The circuit-breakers can be mounted alongside each other or one above the other, whereby the spacing of the circuit-breakers is determined solely by the length of the Bowden cable. The Bowden cables are supplied in standard lengths of 2 m . Interlock signals are looped through via the Bowden cables. Interlocking is only effective in the connected position in the case of withdrawable circuit-breakers
The mechanical lifetime of the Bowden cables is 10,000 operating cycles.
The interlocking module is mounted on the right-hand side of the fixed-mounted circuit-breaker (see illustration) or the guide frame.


3WN6 circuit-breaker, 4-pole, with interlocking module and Bowden wire


Interlocking module with Bowden wire

|  | Version |  | Description |
| :--- | :--- | :--- | :--- | :--- | :--- |

# Circuit-Breakers up to 3200 A, Discontinued Series 

## Transfer control device

The transfer control device allows automatic network switchovers from a standard-network supply to an emergency-network supply. Standard and emergency-network supply:
AC 380/400 V
A transformer is generally used for standard-network supplies. The emergency-network supply is usually provided by a generator or transformer.
The transfer control device monitors the infeed side of both cir-cuit-breakers. If the standard-network supply fails, the emergency network is switched on automatically. When the standardnetwork returns, it is also reactivated automatically.

The switchover requires two circuit-breakers with the basic configuration
3WN6 _-_ _-_ 58-1KA _
(the blank spaces can be configured as required) and one transfer control device 3WX36 66-7JA00.
The transfer control device can be mounted to the wall or installed in the control cabinet. It can be installed in the control cabinet without an enclosure.
The transfer control device can be used to implement automatic network switchovers to IEC 60947-6-1.

The two 3WN6 circuit-breakers must be mutually interlocked for this purpose. (See "Accessories/spare parts", "For fixedmounted and withdrawable circuit-breakers", "Mutual mechanical interlocking".)



[^8]
## Circuit-Breakers up to 3200 A, Discontinued Series

## General data

## Technical specifications

Size   Type			3WN6 0	3WN6 2	3WN6 4	II   3WN6 5	3WN6 6	3WN6 7
$\begin{aligned} & \text { Rated current } I_{\mathrm{n}} \text { at } 55^{\circ} \mathrm{C}, \\ & \text { at } 50 / 60 \mathrm{~Hz} \end{aligned}$	Main conductor	A	630	1000	1600	2000	2500	3200
	Neutral conductor (only on 4-pole vers.)	A	630	1000	1600	2000	2500	3200
Rated operating voltage $U_{e}$ at $50 / 60 \mathrm{~Hz}$		AC V	up to 690					
Rated impulse withstand voltage $U_{\text {imp }}$	Main circuits ${ }^{7}$ ) Auxiliary circuits	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$	$\begin{array}{\|l} 8 \\ 4 \end{array}$					
Utilization category			B					
Rated short-circuit making capacity $I_{\mathrm{cm}}$ (peak value)	up to AC 415 V up to AC 500 V up to AC 690 V	$\begin{aligned} & \text { kA } \\ & \text { kA } \\ & \text { kA } \end{aligned}$	$\begin{aligned} & 143 \\ & 143 \\ & 110 \end{aligned}$			$\left\lvert\, \begin{aligned} & 176 \\ & 176 \\ & 110 \end{aligned}\right.$		
Rated service short-circuit breaking capacity $I_{\text {cs }}$ (rms value)	up to AC 415 V up to AC 500 V up to AC 690 V	$\begin{aligned} & \text { kA } \\ & \text { KA } \\ & \text { kA } \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 50 \end{aligned}$			$\begin{aligned} & 80 \\ & 80 \\ & 50 \end{aligned}$		
Rated ultimate short-circuit breaking capacity $I_{\text {cu }}$ (rms value)	up to AC 415 V up to AC 500 V up to AC 690 V	$\begin{aligned} & \text { KA } \\ & \text { KA } \\ & \text { KA } \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \\ & 50 \end{aligned}$			$\begin{aligned} & 80 \\ & 80 \\ & 50 \end{aligned}$		
Permissible ambient temperatures	Operation Storage	${ }^{\circ} \mathrm{C}$	$\begin{aligned} & -20 \ldots+70 \\ & -40 \ldots+80 \end{aligned}$					
Rated short-time withstand current $I_{\text {cw }}$ at $50 / 60 \mathrm{~Hz}$	$\begin{aligned} & 0.5 \mathrm{~s} \\ & 1 \mathrm{~s} \\ & 2 \mathrm{~s} \\ & 3 \mathrm{~s} \\ & 4 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { KA } \\ & \text { KA } \end{aligned}$	$\begin{aligned} & 50 \\ & \left.35 / 50^{1}\right) \\ & \left.25 / 30^{1}\right) \\ & \left.20 / 25^{1}\right) \\ & \left.17 / 20^{1}\right) \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \\ & 30 \\ & 25 \\ & 20 \end{aligned}$	$\begin{array}{\|l} 65 \\ 65 \\ 60 \\ 50 \\ 40 \end{array}$		
Permissible load for fixed-mounted and withdrawable circuitbreakers at cabinet interior temperature $\left.\left.{ }^{2}\right)^{3}\right)^{4}$ )	up to $55^{\circ} \mathrm{C}$   at $60^{\circ} \mathrm{C}$   at $70^{\circ} \mathrm{C}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 630 \\ & 630 \\ & 630 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1000 \end{aligned}$	$\begin{aligned} & 1600 \\ & 1600 \\ & 1530 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2000 \\ & 2000 \end{aligned}$	$\begin{aligned} & 2500 \\ & 2350 \\ & 2330 \end{aligned}$	$\begin{aligned} & 3200 \\ & 2860 \\ & 2650 \end{aligned}$
Rated rotor operating voltage $U_{\text {er }}$		V	2000					
Power loss at $I_{\mathrm{n}}$ with 3 -phase symmetr. load (without line-side busbars and metal components $\left.{ }^{2}\right)^{4}$ )	Fixed-mounted cir.-br.	W	40	90	140	170	260	420
	Withdrawable circuitbreaker including guide frame	W	80	205	310	310	510	760
Service life with maintenance ${ }^{5}$ )	mechanical electrical	Op. cycles	$\begin{aligned} & 20000 \\ & 20000 \end{aligned}$			$\begin{aligned} & 20000 \\ & 20000 \end{aligned}$		
without maintenance ${ }^{5}$ )	mechanical electrical ${ }^{6}$ )	Op. cycles	$\begin{array}{r} 10000 \\ 6000 \\ \hline \end{array}$			$\begin{array}{r} 10000 \\ 2000 \end{array}$		
Operating frequency		1/min	1					
Minimum interval   between tripping operation by electronic trip unit and next making operation of the circuit-breaker (only with automatic mechanical resetting of the lockout device)		ms	80					
Service position				and/ or				

Degree of protection

Main conductor minimum cross-sections	Copper bars, bare	
	Copper bars, painted black	
Auxiliary conductors (Cu)	Max. no. of aux. conductors $\times$ crosssection	solid and finely stranded with end sleeves
Weights	3-pole circuitbreakers	Fixed-mounted circuit-breaker approx. kg
		Withdrawable circuit-breaker approx. kg
		Guide frame approx. kg   Fixed-mounted circuit-breaker approx. kg
	4-pole circuitbreakers	
		Withdrawable circuit-breaker approx. kg
		Guide frame approx. kg

1) Figures apply to circuit-breakers with order code "K03", see "Options".
2) For fixed-mounted circuit-breakers with horizontal connection, for withdrawable circuit-breakers with vert. conn., see manual for 3WN6 circuitbreakers.
3) The temperatures apply to the air surrounding the upper third of the circuitbreaker.

# Circuit-Breakers up to 3200 A, Discontinued Series 

## General data



1) The operating range is only permissible for the specified rated voltages and corresponds to the battery charging voltage.
2) Storage time = maximum time after which tripping by the shunt release is still assured after loss of the auxiliary voltage supply. The precondition for this is that the stored energy feature was fully charged.
3) Recharging time $=$ minimum time for recharging the stored energy feature after tripping by the shunt release.

## Circuit-Breakers up to 3200 A, Discontinued Series

## General data



1) The operating range is only permissible for the specified rated voltages and corresponds to the battery charging voltage.
2) Without any welding of the contacts only at $I_{\mathrm{k}} \leq 1 \mathrm{kA}$ in accordance with DIN VDE 0660 Part 200.

## Circuit-Breakers up to 3200 A, Discontinued Series

## General data

Electronic trip unit signals				
Electronic trip unit signals via optocoupler   Measuring accuracy of the el	$\mu \mathrm{P}$ fault, $\vartheta$ alarm, leading tri "g" alarm, Zone Selective In   After activation of the elect nal (contactless) via optoco Max. rated operating voltag Max. rated operating curre ip unit	d signaling cking, load trip unit it r.	$\begin{array}{r} D C V \\ D C \mathrm{~mA} \end{array}$	24   20   Protection functions to EN 60947; current indication and communication function (F01): $\pm 5 \%$; measurement function (F05): $\pm 3 \%$
Position indicator switch on guide frame				
Type of contact Signal:	"Circuit-breaker in connect   "Circuit-breaker in test posi   "Circuit-breaker in disconn	sition"   position"		$3 \mathrm{NO}+3 \mathrm{NC}$  $1 \mathrm{NO}+1 \mathrm{NC}$   $2 \mathrm{NO}+2 \mathrm{NC}$ or $1 \mathrm{NO}+1 \mathrm{NC}$   $1 \mathrm{NO}+1 \mathrm{NC}$  $1 \mathrm{NO}+1 \mathrm{NC}$
Rated insulation voltage $U_{i}$   Rated operating voltage $U_{e}$   Switching capacity			AC/DC V	400 (415)
				AC 240/DC 230
	Rated operating current $I_{\mathrm{e}}$	$\begin{aligned} & I_{\mathrm{e}} / \mathrm{AC}-1 \\ & I_{\mathrm{e}} / \mathrm{AC}-15 \\ & I_{\mathrm{e}} / \mathrm{DC}-13 \end{aligned}$	A	8 up to AC 240 V   3 up to AC 240 V   10/DC 24 V; 5/DC 48 V; 1.5/DC 115 V ; 0.6/DC 230 V
Short-circuit protection ${ }^{1}$ )	Largest permissible DIAZED fuse (operational class gL) Largest permissible miniature circuit-breaker with C-characteristic			$\begin{aligned} & 8 \text { A TDz (slow) } \\ & 8 \mathrm{~A} \end{aligned}$
Transfer control device				
	Degree of protection Weight   Voltage deviation Frequency deviation Contact transfer time Switchover time Return transfer time Break-time Ambient temperature Storage temperature			$\begin{aligned} & \text { IP40 } \\ & \text { approx. } 10 \mathrm{~kg} \\ & 0 \ldots 0.55 \times \text { Ue } \\ & \text { not monitored } \\ & 200 \mathrm{~ms}+\mathrm{T} 1 \text { adjustable }(1.5 \mathrm{~s} \ldots 30 \mathrm{~s}) \\ & 200 \mathrm{~ms} \\ & 200 \mathrm{~ms}+\mathrm{T} 2 \text { adjustable }(5 \mathrm{~s} \ldots 100 \mathrm{~s}) \\ & 65 \mathrm{~ms} \\ & -25 \ldots+55^{\circ} \mathrm{C} \\ & -50 \ldots+80^{\circ} \mathrm{C} \end{aligned}$

1) Without any welding of the contacts only at $I_{\mathrm{k}} \leq 1 \mathrm{kA}$ in accordance with DIN VDE 0660 Part 200

## Circuit-Breakers up to 3200 A, Discontinued Series

## 3-pole, fixed-mounted design

Selection and ordering data


1) Current transformers for overload protection in the neutral conductor and current transformers for ground-fault protection must be ordered separately, see Page 5/108.
2) A hand-held device or the Win3WN6 software is required for operation.

## Circuit-Breakers up to 3200 A, Discontinued Series

3-pole, withdrawable design

Version				DT	Order No.				PS*	Weight per PU approx.
Rated operating voltage $U_{\text {e }}$ up to AC 690 V					3 WN $6 \square \square 1-\square \square \square \square \square-\square \square \square \square$					kg
Size/   rated current   $I_{\mathrm{n}}$	Size	Rated current $I_{\mathrm{n}}$	Adjustment range of setting current $I_{\mathrm{r}}$							
	I	630 A	252-630 A	A	0		D		1 unit	49.000
		1000 A	400-1000 A	A	2		F		1 unit	36.000
		1600 A	640-1600 A	A	4		H		1 unit	38.000
	11	2000 A	800-2000 A	A	5		J		1 unit	59.000
		$\begin{aligned} & 2500 \mathrm{~A} \\ & 3200 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1000-2500 \mathrm{~A} \\ & 1280-3200 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$		$\begin{aligned} & \mathbf{K} \\ & \mathbf{M} \end{aligned}$		1 unit 1 unit	$\begin{aligned} & 61.000 \\ & 63.000 \end{aligned}$
Installation type	Main terminals see Page 5/85								Additiona guide fram	weight for e
Withdrawable design	Withdrawable circuit-breaker without guide frame									without
Other versions of the guide frame see Page 5/110.	Stand horizo up to 1250 2000   2500   3200	gn: rear, minals with guide   A	s							$\begin{aligned} & 27.000 \\ & 23.000 \\ & 35.000 \\ & 37.000 \\ & 37.00 \end{aligned}$
Electronic trip units (see functional overview, Page 5/90)	Version V "zn"					0		V		
	Version B "azn"					0		B		
	Version C "aznNg"1)					0		C		
	Version D "aznN"1)									
	Basic functions with LCD display					1		D		
	Basic functions and additional functions 2 with LCD display					7		D		
	Version E "aznNg ${ }^{\text {¹ }}$ )									
	Basic functions with LCD display					1		E		
	Basic functions and additional functions 2 with LCD display					7		E		
	Version H "aznN"1) ${ }^{2}$ )									
	Basic functions and additional functions 2					7		H		
	Version J "aznNg $\left.{ }^{\text {"1 }}\right)^{2}$ )									
	Basic functions and additional functions 2					7		J		
	Version N "aznN"1)									
	Basic functions and additional functions 2					7		N		
	Version P "aznNg ${ }^{\text {"1 }}$ )									
	Basic functions and additional functions 2					7		P		
Circuit-breakers also available with rated short-time withstand current $I_{\mathrm{cw}}=50 \mathrm{kA} / 1 \mathrm{~s}$, see Page 5/105.							11th to   16th positions of the Order No. see Page 5/104.			

1) Transformers for overload protection in the neutral conductor and transformers for ground-fault protection must be ordered separately, see Page 5/108.
2) A hand-held device or the Win3WN6 software is required for operation.

## Circuit-Breakers up to 3200 A, Discontinued Series

## 4-pole, fixed-mounted design



1) 4th current transformer is already fitted in the neutral conductor of the cir-cuit-breaker.
2) Current transformers for overload protection in the neutral conductor and current transformers for ground-fault protection must be ordered separately, see Page 5/108.
3) The current transformer mounted in the star point of the transformer must be ordered separately, see Page 5/108.
4) A hand-held device or the Win3WN6 software is required for operation.

## Circuit-Breakers up to 3200 A, Discontinued Series

4-pole, withdrawable design


1) 4th transformer is already fitted in the neutral conductor of the circuitbreaker.
2) Transformers for overload protection in the neutral conductor and transformers for ground-fault protection must be ordered separately, see Page 5/108.
3) The current transformer mounted in the star point of the transformer must be ordered separately, see Page 5/108.
4) A hand-held device or the Win3WN6 software is required for operation.

## Circuit-Breakers up to 3200 A, Discontinued Series

## Options

Selection and ordering data


# Circuit-Breakers up to 3200 A, Discontinued Series 



## Circuit-Breakers up to 3200 A, Discontinued Series

## Options



1) New technical design since 01 July 1998 (previously order code "S55").
2) Required for protection against flashover at voltages $>415 \mathrm{~V}$. Not to be used with vertical, front-accessible main circuit connections.

# Circuit-Breakers up to 3200 A, Discontinued Series 



[^9]
# Circuit-Breakers up to 3200 A, Discontinued Series 

## Accessories/spare parts

## Selection and ordering data



# Circuit-Breakers up to 3200 A, Discontinued Series 

Accessories/spare parts


[^10]
## Circuit-Breakers up to 3200 A, Discontinued Series

## Accessories/spare parts



## Circuit-Breakers up to 3200 A, Discontinued Series

Accessories/spare parts


1) When units are retrofitted, the number of auxiliary supply connectors (see

Page $5 / 110$ ) must be checked. Additionally required auxiliary supply connectors must be ordered as shown on Page $5 / 113$ or $5 / 114$.

## Circuit-Breakers up to 3200 A, Discontinued Series

## Accessories/spare parts

	When retrofitting, the circuit-breaker Order No. must be added to the name plate on the operator panel and to the side wall of the circuit-breaker in accordance with the installation instructions.								
	Designation				Required order DT quantity per cir-cuit-breaker		For 1 set or 1 unit	PS*	Weight per PU approx.
							Order No.		kg
	For fixed-mounted and withdrawable circuit-breakers								
	Mutual mechanical interlock for 3WN6 circuitbreaker	An interlock module with a Bowden wire (2 m) for one fixed-mounted circuit-breaker for one withdrawable circuit-breaker ${ }^{4}$ )			1 unit 1 unit	$\begin{aligned} & A \\ & A \end{aligned}$	$\begin{aligned} & \text { 3WX36 66-3JA00 } \\ & \text { 3WX36 66-4JA00 } \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 3.000 \\ & 1.000 \end{aligned}$
		Interlocking of three circuit-breakers additional Bowden wire required for each circuit-breaker Bowden wire (2 m)			1 unit	A	3WX36 66-8JA00	1 unit	0.200
		Bowden wire (3 m) Bowden wire ( 4.5 m ) Bowden wire ( 6 m )			1 unit	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { 3WX36 66-8JA01 } \\ & \text { 3WX36 66-8JA02 } \\ & \text { 3WX36 66-8JA03 } \end{aligned}$	1 unit 1 unit 1 unit	$0.500$ on req. on req.
	Locking device consisting of safety locks or padlocks to prevent unauthorized closing of the circuitbreaker	either	Safety lock (3SB1) instead of the OFF button ${ }^{2}$ )	Made by CES   Normal lock no. SSG 10	1 unit	A	3WX36 63-1JA00	1 unit	0.120
				Made by BKS   Normal lock no. S1		A	3WX36 63-1JB00	1 unit	0.120
				Made by IKON   Normal lock no. 360012 K1		A	3WX36 63-1JC00	1 unit	0.120
		or	Locking device (shackle diame	for max. 4 padlocks ter $4 \ldots 8 \mathrm{~mm})^{3}$ )	1 unit	A	3WX36 63-1JG00	1 unit	0.200
			with EMERGEN instead of the	CY-STOP button (self-latching)   FF button	1 unit	A	3WX36 61-0JA00	1 unit	0.100
			Safety lock (3SB1) instead	Made by CES   Normal lock no. SSG 1	1 unit	A	3WX36 63-2JA00	1 unit	0.120
			of the mechanical ON button ${ }^{2}$ )	Made by BKS   Normal lock no. S1		A	3WX36 63-2JB00	1 unit	0.120
				Made by IKON   Normal lock no. 360012 K1		A	3WX36 63-2JC00	1 unit	0.120
			Mounting set ${ }^{5}$ ) FORTRESS lock Interlock to be facturer CASTE lock (H31LH/65	for CASTELL or ${ }^{1}$ )   btained from the lock manuLL lock (FS 2) or FORTRESS /standard)	1 set	A	3WX36 63-6JE00	1 set	0.100
			Mounting set ${ }^{5}$ )	for KIRK-KEY lock ${ }^{1}$ )	1 unit	A	3WX36 63-6JE30	1 unit	0.700
			Access lock to or KIRK-KEY Iock when the key is covered; lockab	CASTELL, FORTRESS $\mathrm{k}^{1}$ ) removed the key opening is le with up to 4 padlocks	1 unit	A	3WX36 63-6JE10	1 unit	on req.

1) Locks must be ordered from the manufacturer.
2) Locks with special closure must be ordered according to Catalog LV10 "Controlgear for industry", section 9 "Control and signaling devices".
3) The locking device for padlocks cannot be used together with a safety lock instead of an OFF button
4) Can be retrofitted to circuit-breakers supplied after 01 July 1998.
5) The 3WX36 63-6JE locking system meets the isolation conditions to IEC 60947-1 and IEC 60947-1/A1.

## Circuit-Breakers up to 3200 A, Discontinued Series

Accessories/spare parts


1) Please determine the number of connecting bars required yourself.
2) Required for protection against flashover at voltages $>\mathrm{AC} 415 \mathrm{~V}$.

## Circuit-Breakers up to 3200 A, Discontinued Series

## Accessories/spare parts



1) Required for protection against flashover at voltages $>\mathrm{AC} 415 \mathrm{~V}$.
2) Please determine the number of connecting bars required yourself.

## Circuit-Breakers up to 3200 A, Discontinued Series

Accessories/spare parts

Designation	Size	Number of poles	Required order quantity per circuit-breaker	DT	For 1 unit Order No.	PS*	Weight per PU approx. kg
Conversion set from fixed-mounted to	1	$\begin{aligned} & \text { 3-pole } \\ & \text { 4-pole } \end{aligned}$	1 unit	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	3WX36 88-0GA00 3WX36 88-0HA00	1 unit 1 unit	on req. on req.
withdrawable variant   = single operating   mechanism	II	$\begin{aligned} & \text { 3-pole } \\ & \text { 4-pole } \end{aligned}$	1 unit	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	3WX36 88-0KA00   3WX36 88-0LA00	1 unit 1 unit	on req. on req.


Designation	For circuit-breaker Type	Rated current	Size	Number of poles	Required order quantity per circuit-breaker	DT	For 1 set or 1 unit	PS*	Weight per PU approx.   kg		
							Order No.				
For fixed-mounted and withdrawable circuit-breakers											
Main contact elements, complete	3WN6 0.1 to 3WN6 2.1	up to 1000 A	I	3-pole	3 units	B	3WY36 21-0AA00	1 unit	2.000		
	$\begin{aligned} & \text { 3WN6 0.1-..........-Z K03 } \\ & \text { to } \\ & \text { 3WN6 2.1-.........-Z K03 } \end{aligned}$	up to 1000 A	1	3 -pole	3 units	B	3WY36 21-0AA10	1 unit	on req.		
	3WN6 0.3 to 3WN6 2.3	up to 1000 A	1	4-pole	4 units	B	3WY36 21-0AA00	1 unit	2.000		
	```3WN6 0.3-....-....-Z K03 to 3WN6 2.3-....-....-Z K03```	up to 1000 A	I	4-pole	4 units	B	3WY36 21-0AA10	1 unit	on req.		
	3WN6 3.1 to 3WN6 4.1	1250... 1600 A	I	3 -pole	3 units	B	3WY36 21-0BA00	1 unit	3.000		
	3WN6 3.3 to 3WN6 4.3	1250... 1600 A	I	4-pole	4 units	B	3WY36 21-0BA00	1 unit	3.000		
	3WN6 5.1 3WN6 5.3	$\begin{aligned} & 2000 \mathrm{~A} \\ & 2000 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \\| \\ & \text { ॥ } \end{aligned}$	$\begin{aligned} & \text { 3-pole } \\ & \text { 4-pole } \end{aligned}$	3 units 4 units	$\begin{aligned} & \hline B \\ & B \end{aligned}$	3WY36 21-0DA00 3WY36 21-0DA00	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & 5.300 \\ & 5.300 \end{aligned}$		
	3WN6 6.1 3WN6 6.3	$\begin{aligned} & 2500 \mathrm{~A} \\ & 2500 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \\| \\ & \\| \end{aligned}$	$\begin{aligned} & \text { 3-pole } \\ & \text { 4-pole } \end{aligned}$	3 units 4 units	$\begin{aligned} & B \\ & B \end{aligned}$	3WY36 21-0EA00 3WY36 21-0EA00	1 unit 1 unit	$\begin{aligned} & 7.000 \\ & 7.000 \end{aligned}$		
	3WN6 7.1 3WN6 7.3	$\begin{aligned} & 3200 \mathrm{~A} \\ & 3200 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \\| \\ & \\| \end{aligned}$	$\begin{aligned} & \text { 3-pole } \\ & \text { 4-pole } \\ & \hline \end{aligned}$	3 units 4 units	$\begin{aligned} & B \\ & B \end{aligned}$	$\begin{aligned} & \text { 3WY36 21-0FA00 } \\ & \text { 3WY36 21-OFAOO } \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 7.300 \\ & 7.300 \\ & \hline \end{aligned}$		
Arc chute	3WN6 0.1 to 3WN6 4.1 3WN6 0.3 to 3WN6 4.3	up to 1600 A up to 1600 A		$\begin{aligned} & \text { 3-pole } \\ & \text { 4-pole } \end{aligned}$	3 units 4 units	$\begin{aligned} & \hline \text { B } \\ & \text { B } \end{aligned}$	3WY36 11-0CA00 3WY36 11-0CA00	1 unit 1 unit	$\begin{aligned} & 1.800 \\ & 1.800 \end{aligned}$		
	3WN6 5.1 to 3WN6 7.1 3WN6 5.3 to 3WN6 7.3	$\begin{aligned} & 2000 \ldots 3200 \mathrm{~A} \\ & 2000 \ldots 3200 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \\| \\ & \text { ॥ } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3-pole } \\ & \text { 4-pole } \end{aligned}$	3 units 4 units	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	3WY36 11-0FA00 3WY36 11-0FA00	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & 2.500 \\ & 2.500 \\ & \hline \end{aligned}$		
Crank handle	For withdrawable circuitbreaker				1 set	A	3WX36 84-0JA00	1 set	on req.		

Main contact elements

Circuit-Breakers up to 3200 A, Discontinued Series

Project planning aids

Characteristics

The characteristics show the behavior of the electronic trip unit when it is activated by a current that is already flowing before the tripping operation. If the overcurrent tripping occurs immediately after switch on and the electronic trip unit is therefore not yet enabled, the opening time is extended, depending on the level of the overcurrent by approximately 3 to 10 ms . In order to deter-

Tripping characteristics "a" and "z": "z" = definite-time delayed

Tripping characteristics of electronic trip units - version B
mine the total break-times of the circuit-breakers, approximately 15 ms must be added to the opening times shown for the arcing time.
Tolerances according to IEC 60947.

Tripping characteristics of electronic trip units - version C/G

Key to illustrations above:

Inverse-time delayed electronic trip unit "a"
$I_{r} \quad$ Current setting (adjustable)
$I_{\mathrm{N}} \quad$ Current setting (50 or $100 \% I_{\mathrm{r}}$) for den N conductor
$T_{c} \quad$ Time-lag class (permanently set to 10 s)

Tripping characteristic " n "

Tripping characteristics of electronic trip units - versions B and C/G
I_{n} Transformer primary rated current
Instantaneous short-circuit release "n"
$I_{\mathrm{i}} \quad$ Operating current (permanently set)

Short-time delayed short-circuit release "z"
I_{d} Operating current (adjustable)
t_{d} Delay time (adjustable)

Tripping characteristics of electronic trip units - version C/G
I_{n} Transformer primary rated current
Ground-fault release " g "
I_{g} Operating current (adjustable)
t_{g} Delay time (adjustable)

Circuit-Breakers up to 3200 A, Discontinued Series

Project planning aids

Dimension drawings

3WN6 fixed-mounted circuit-breakers, 3-pole

Horizontal connection

(1) Clearance for lifting out the arc chute
(2) Space for auxiliary supply connectors
(3) Space above arc chute
(4) Auxiliary supply connectors
(5) Switchboard door
(6) Recessed grip
(7) M8 nut
(8) Slots (4 mm deep) for line-side phase barriers
(9) Center line of circuit-breaker

Safety clearances

No additional safety clearance is required to adjacent grounded parts above the circuit-breaker (on fixed-mounted circuit-breakers identified with 3).
The clearance between the connection point and the support for the busbars must not exceed 250 mm .

Front connection

| Rated current
 A | a | b | c | d | e | f | g | h | i | k | l | m | n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $630 \ldots 1000$ | 300 | 320 | 90 | 8 | 60 | 30 | - | 8 | 530 | 18 | 40 | 300 | 338 |
| $1250 \ldots 1600$ | 300 | 320 | 90 | 15 | 60 | 30 | - | 20 | 530 | 18 | 40 | 300 | 338 |
| 2000 | 400 | 420 | 120 | 15 | 80 | 40 | 40 | 20 | 560 | 22 | 44 | 400 | 438 |
| $2500 \ldots 3200$ | 400 | 420 | 120 | 30 | 80 | 40 | 40 | 20 | 560 | 22 | 44 | 400 | 438 |

Main conductor connection

Terminal screws with strain washers (inside diameter $=12$ mm to DIN 6769-Fst)	M12	
Recommended tightening torque	Nm	70
Required strength of screws	8.8 to DIN 267	

Up to a rated operating voltage of AC 415 V
the busbars running vertically (such as in the case of frontaccessible connection) do not have to be screened if the busbar system is not arranged above the circuit-breaker. In contrast, live bare conductors and
busbars at voltages above AC 415 V that are arranged above the circuit-breaker and when power is supplied from above must be insulated against flashover by interphase barriers or by a busbar cover or by an arc chute cover (use accessory for horizontal or vertical connection only). Optional electrical equipment directly above (if no arc chute cover is used) or to the side of the circuit-breaker should be protected by a cover. Also after the attachment of additional barriers or covers it must be ensured that the dissipation of heat from the circuit-breaker is not impeded.

Circuit-Breakers up to 3200 A, Discontinued Series

Project planning aids

3WN6 circuit-breakers, withdrawable version, 3-pole

Horizontal connection

a Disconnected position
b Test position
c Connected position
(1) Auxiliary conductor plug-in system
(2) Guide frame
(3) Switchboard door
(4) Slots (6 mm deep) for line-side interphase barriers
(5) Holes for attaching the guide frame
(6) Center line of circuit-breaker

For safety clearances see Page 5/117

Vertical connection

| Rated current
 A | a | b | c | d | e | f | h | i | k | l | m | n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 630 up to 1000 | 280 | 320 | 90 | 8 | 60 | 30 | 455 | 470 | 157.5 | 115 | 37 | 90 |
| 1250 up to 1600 | 280 | 320 | 90 | 15 | 60 | 30 | 455 | 470 | 157.5 | 115 | 37 | 90 |
| 2000 | 380 | 420 | 120 | 15 | 80 | 40 | 465 | 480 | 157.5 | 115 | 40 | 140 |
| 2500 up to 3200 | 380 | 420 | 120 | 30 | 100 | 50 | 465 | 480 | 150 | 130 | 40 | 140 |

Circuit-Breakers up to 3200 A, Discontinued Series

Project planning aids
3WN6 circuit-breakers, withdrawable version, 3-pole

Front connection

Single hole, 630 to 1600 A

Double hole, 630 to 1600 A
Holes in bars to DIN 43673

Single hole, 2000 to 3200 A

Double hole, 2000 to 3200 A
Holes in bars to DIN 43673

Circuit-Breakers up to 3200 A, Discontinued Series

Project planning aids

3WN6 fixed-mounted circuit-breakers, 4-pole

Horizontal connection

Fixing holes for support bracket

Front connection

Single hole

Double hole
Holes in bars to DIN 43673

| Rated current
 A | a | b | c | d | e | f | g | h | i | k | l | m | n | p |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $630 \ldots 1000$ | 390 | 410 | 90 | 8 | 60 | 30 | - | 8 | 530 | 18 | 40 | 390 | 428 | 150 |
| $1250 \ldots 1600$ | 390 | 410 | 90 | 15 | 60 | 30 | - | 15 | 530 | 18 | 40 | 390 | 428 | 150 |
| 2000 | 520 | 540 | 120 | 15 | 80 | 40 | 40 | 20 | 560 | 22 | 44 | 520 | 558 | 200 |
| $2500 \ldots 3200$ | 520 | 540 | 120 | 30 | 80 | 40 | 40 | 20 | 560 | 22 | 44 | 520 | 558 | 200 |

Circuit-Breakers up to 3200 A, Discontinued Series

Project planning aids
3WN6 circuit-breakers, withdrawable version, 4-pole

Horizontal connection

L3 L2 (6) L1 N

Rated current A	a	b	c	d	e	f	h	i	k	I	m	n	0	p
630 ... 1000	370	410	90	8	60	30	455	470	157.5	115	37	90	90	140
1250 ... 1600	370	410	90	15	60	30	455	470	157.5	115	37	90	90	140
2000	500	540	120	15	80	40	465	480	157.5	115	40	140	120	190
2500 ... 3200	500	540	120	30	100	50	465	480	150	130	40	140	120	190

Circuit-Breakers up to 3200 A, Discontinued Series

Project planning aids

3WN6 circuit-breakers, withdrawable version, 4-pole

Front connection

Rated current A	a	b	c	d	e
$630 \ldots 1000$	60	-	8	390	408
$1250 \ldots 1600$	60	-	15	390	408
2000	80	40	20	420	445
$2500 \ldots 3200$	100	50	20	420	445

(1) Guide frame
(2) Switchboard door
(3) Slots (6 mm deep, 3.5 mm wide)
for line-side phase barriers
(4) Center line of operator panel

For safety clearances see Page 5/117.

Single hole, 630 to 1600 A

Double hole, 630 to 1600 A
Holes in bars to DIN 43673

Single hole, 2000 to 3200 A

Double hole, 2000 to 3200 A Holes in bars to DIN 43673

3WN6 circuit-breakers, 3- and 4-pole

(1) Mounting surface

3 holes, dia. $\varnothing 5.5 \mathrm{~mm}$; only drill when using door interlocking.

Door cut-out

with edge protector
Cut-out after mounting the edge protector

Cut-out when the circuit-breaker is installed in a switchgear cabinet and with the door arranged centrally.

Section width	Fixed-mounted b	Withdrawable b
400	275	292
500	275	290
600	275	288

Circuit-Breakers up to 3200 A, Discontinued Series

Project planning aids

Accessories for 3WN6 circuit-breakers, 3- and 4-pole
Mutual mechanical interlocking (1)/locking device to prevent closing (2),
consisting of lock in the control cabinet door and interlock module with Bowden wire
For fixed-mounted circuit-breakers

(1) Clearance for interlock module
(without Bowden wire)

For withdrawable circuit-breakers

Clearance for	a	b	c	d	e
(1)	90	90	50	65	270
(2)	58	215	10	250	115

3WX31 56-1J. 01 storage device for shunt release
and enclosure for voltage transformer for measurement module

Current transformer for neutral conductor overload protection and ground-fault protection

for sizes I and II

Current transformer 3WX36 43-1. . 00	Current transformer primary rated current I_{n}	Size	A approx	B	C	D	E	F
CA CB CC CD $C E$ $C F$ $C G$ $C H$	$\begin{array}{r} 315 \\ 400 \\ 500 \\ 630 \\ 800 \\ 1000 \\ 1250 \\ 1600 \end{array}$	I	92	60	86.5	140	5... 15	107
$\begin{aligned} & \text { FJ } \\ & \text { FK } \\ & \text { FM } \end{aligned}$	$\begin{aligned} & 3200 \\ & 2500 \\ & 3200 \end{aligned}$	II	128	80	99	167	5... 35	136

Transfer control device
"mechanical OFF" buttons (1)

Dimensions for holes, outer dimensions

Circuit-Breakers up to 3200 A, Discontinued Series

Project planning aids

Circuit diagrams

Example of an overall circuit diagram

Motor/manual operating mechanism with stored-energy feature, with ready-to-close signaling switch, with electronic trip unit version b "azn", with overvoltage release "r" (F3)
or shunt release "f" (F1), with shunt release "f" (F2), with "tripped"
signaling switch, with auxiliary switch $2 \mathrm{NO}+2 \mathrm{NC}+2 \mathrm{CO}$, with motor switch

A1	Electronic trip unit
S1/S2	1st auxiliary switch block
S3/S4	2nd auxiliary switch block
S7	Ready-to-close
	signaling switch
S8	Storage spring contact
S9	Motor switch
S10	"Electrical ON" button
S11	"Tripped" switch
F1	1st shunt release "f"
F2	2nd shunt release "f"
F3	Undervoltage release "r"
F5	Trip solenoid
M1	Motor for
	"charging store"
P	Storage spring
Q01	Hand-operated lever for
	"charging store"
Q1	Main contacts
T1/T2/T3	Current transformer
X100/X200	Terminals
Y1	Closing solenoid
R	Indication and reset button
	for overcurrent tripping

Circuit-Breakers up to 3200 A, Discontinued Series

Project planning aids
Indicator switches for the switch positions in the guide frame

Order code "R14"
3WX36 84-1JC10

Contact
position with:

Circuit diagram for optional equipment

-F1A
Storage device for 1st or 2nd shunt release
(-F1 or -F2)

<21> 1st shunt release -F1
$<22>$ Auxiliary switch for <21>
$<27>$ 2nd shunt release -F2
<28> Auxiliary switch for <27>
<91> or <92> External "electrical <OFF>" by -F1 or -F2 button only

3WX31 56-1JG01 and 3WX31 56-1JJ01 storage devices
for shunt release with stored energy feature

Further information

For planning guides with further descriptions relating to design, operating principle, installation and retrofitting see manual
"3WN6 circuit-breakers for low voltage"
Order No.: E20001-P285-A571-V2 (in German)
For further information on the selection, ordering and project planning of communication-capable circuit-breakers, refer to the section "Communication-capable circuit-breakers" and the manual "Communication links for 3VF, 3WN6, 3WN1/3WS1 circuitbreakers to PROFIBUS DP"
Order No. E20001-P285-A644-V1 (in German only).

3-pole, fixed-mounted design

Non-Automatic Circuit-Breakers up to 3200 A, Discontinued Series

3-pole, withdrawable design

4-pole, fixed-mounted design

Non-Automatic Circuit-Breakers up to 3200 A, Discontinued Series

4-pole, withdrawable design

Options

Selection and ordering data

For technical specifications, options, accessories/spare parts and project planning aids see "Circuit-breakers, up to 3200 A, discontinued series".

[^0]: Non-automatic circuit-breakers up to 3200 A, discontinued series

 3-pole, fixed-mounted design
 3-pole, withdrawable design 4-pole, fixed-mounted design 4-pole, withdrawable design Options

[^1]: Use of a summation current transformer

[^2]: Delay-time figures given in ms
 $\mathrm{M}=$ motor protection, corresponds to 20 ms .
 $D=$ rotary coding switch
 \checkmark Available.

 - Not available.
 \& S = rotary coding switch and sliding-dolly switch Optional.
 $K=$ communication
 $\mathrm{M} / \mathrm{K}=$ menu/communication

[^3]: 1) Only possible with motorized operating mechanism.
 2) Not possible with "PROFIBUS communication interface" option, order code "F02".
 3) Only for circuit-breakers with motorized operating mechanism, not possi-
 ble with order codes "C11", "C12", "C14"
[^4]: 1) Locks must be ordered from the manufacturer.
 2) Padlock not included in the scope of supply

 - Start of delivery on request.

[^5]: Withdrawable bridging unit, incoming and outgoing side are permanently connected to each other

[^6]: 1) 24 V and 30 V only with undervoltage release UVR (F3).
[^7]: Hand-held device

[^8]: Mode of operation of the transfer control device

[^9]: 1) Required for protection against flashover.
[^10]: 1) 1 set $=3$ units
 2) 1 set $=4$ units
