Protective Devices: Circuit-Breakers ${ }^{1}$)

Introduction

SIRIUS circuit-breakers ${ }^{1}$) up to 100 A

General data

Circuit-breakers ${ }^{1}$) up to 500 A Compact (MCCB) SENTRON VL

General data
For motor/generator protection ETU
For starter combinations
Accessories/spare parts

The term "Circuit-Breaker" in this catalog does not imply UL489 approval. Please reference the individual technical specifications for confirmation.

Protective Devices: Circuit-Breakers

Introduction

Overview

1) For symmetrical loading of the three phases.
2) With molded-plastic enclosure AC 500 V .
3) For overload protection of the motors, appropriate overload relays must be used.
4) Only for circuit-breakers with Cage Clamp terminals.

Note:

[^0]The complete program of SENTRON VL circuit-breakers up to 1600 A for applications in plant/generator protection, motor protection, starter combinations and as non-automatic circuitbreakers as well as the complete range of accessories for the SENTRON VL circuit-breakers are listed in Catalog LV 30 "Products and Systems for Power Distribution".

In order to prevent premature tripping due to the integrated phase failure sensitivity, circuit-breakers should always be connected to ensure current flows through all three main conducting paths.

Short-circuit protection

If a short-circuit occurs, the short-circuit releases of 3RV1 circuitbreakers isolate the faulty load feeder from the mains supply and thus prevent further damage.
Circuit-breakers with a short-circuit breaking capacity of 50 kA or 100 kA are virtually short-circuit proof at a voltage of AC 400 V , since higher short-circuit currents are not to be expected in practice.

Motor protection

The tripping characteristics of 3RV10/3RV11 circuit-breakers are designed mainly to protect three-phase induction motors.

The circuit-breakers are therefore also referred to as motor circuit-breakers.
The rated current I_{n} of the motor to be protected is set on the setting scale. Factory setting of the short-circuit release is 13 times the rated current of the circuit-breaker. This permits trouble-free start-up and ensures that the motor is properly protected.
The phase failure sensitivity of the circuit-breaker ensures that it is tripped in time in the event of a phase failure and overcurrents that occur as a result in the other phases.
Circuit-breakers with thermal overload releases are normally designed in accordance with trip class 10 (CLASS 10). Circuitbreakers of sizes S2 and S3 are also available in class 20 (CLASS 20) and therefore allow motors to be started up under arduous conditions.

Motor protection with overload relay function (automatic reset)

Circuit-breakers for motor protection with overload relay function are designed for the protection of three-phase induction motors.

They are equipped with the same short-circuit release and overload release as circuit-breakers for motor protection without overload relay function.

The circuit-breaker always remains closed in the event of an overload. The overload release activates only two auxiliary contacts ($1 \mathrm{NO}+1 \mathrm{NC}$). The overload trip can be signaled to a higher-level control with the help of these auxiliary contacts. Generally, it is also possible to open a downstream contactor directly.
The overload signal is reset automatically. The circuit-breaker itself only trips if a short-circuit occurs downstream.

Plant protection

The 3RV10/3RV11 circuit-breakers for motor protection are also suitable for plant protection.
In order to prevent premature tripping due to phase failure sensitivity, the three conducting paths must always be uniformly loaded. The conducting paths must be connected in series in the case of single-phase loads.

SIRIUS Circuit-Breakers up to 100 A

Short-circuit protection for starter combinations

The 3RV13 circuit-breakers for starter combinations in sizes S0, S2 and S3 provide short-circuit protection with the help of a contactor and overload relay combination.
Like the circuit-breakers for motor protection, they are equipped with short-circuit releases which are permanently set to a value equivalent to 13 times the rated current of the circuit-breakers. They are not equipped with overload releases.
On overload, the overload relay triggers the contactor, the circuit-breaker remains closed.

Only when a short-circuit occurs in the feeder does the circuitbreaker trip as well.
The circuit-breaker for starter combinations must always be used in combination with an overload relay because the circuitbreaker alone cannot protect the motor and itself against overload.

Transformer protection

When control-power transformers are protected on the line side, the high inrush currents generated at the time the transformers are switched on often cause spurious tripping in the protection mechanisms.
3RV14 circuit-breakers in sizes S0 and S2 for protecting transformers are therefore fitted with overcurrent releases which are permanently set in the factory to a value equivalent to 20 times the rated current.
Circuit-breakers can thus be used to provide line-side protection for transformers, the inrush peak currents of which are up to 30 times the rated current.
This type of circuit-breaker is not necessary in the case of con-trol-power transformers with low inrush currents, such as control transformers from Siemens. 3RV1 circuit-breakers for motor protection can be used in this case.

Main and EMERGENCY-STOP switches

The circuit-breakers 3RV10, 3RV11, 3RV13, 3RV14 and 3RV16 comply with the isolating function to IEC 60947-2, therefore they can be used - taking IEC 60204-1 into account - as main and EMERGENCY-STOP switches.

3RV19.6-2. door-coupling rotary operating mechanisms for heavy duty also conform with the requirements for the isolating function.

Fuse monitoring

The 3RV16 11-OBD10 circuit-breaker size S00 is used for fuse monitoring.
A fuse is connected in parallel with each conducting path of the circuit-breaker. When a fuse blows, the current flows through the parallel conducting path and trips the circuit-breaker.
The 3RV16 11-OBD10 circuit-breaker must be equipped with a transverse or lateral auxiliary switch (accessories) that signals a tripping operation of the circuit-breaker and thus the tripping of the fuse, or switches off all poles of the disrupted electric circuit with the help of an appropriate switching device.

Notes on safety

When monitoring fuses with safety isolating functions, a warning sign must be affixed near the fuses indicating that voltage may still be present via the parallel circuit of the monitoring equipment assumed to be isolated after the fuse has been removed and if the monitoring equipment is not switched off.

We recommend the following text for this warning:
Important!
For safety isolation, also switch off fuse monitoring equipment with the item code

Circuit-breaker for fuse monitoring
The 3RV16 11-OBD10 circuit-breaker for fuse monitoring is suitable for the following voltages: $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ from AC 24 V to 690 V and up to DC 450 V . Fuse monitoring with 3RV16 110BD10 circuit-breakers is not permissible in feeders with power controllers that can induce DC feedback of higher values when an error occurs.

With parallel cables and meshed systems, the circuit-breaker will only trip, and a signal will be output to indicate this, if the voltage difference across the circuit-breaker is at least 24 V .

Use of IT systems (IT networks)

3RV1 circuit-breakers are suitable for use in IT systems acc. toIEC 60947-2. In the event of a 3-pole short-circuit, their response in this system is the same as in others:
Therefore, the same short-circuit breaking capacity applies, see technical specifications of $I_{c u}$ and $I_{\text {cs }}$.
An initial fault (ground fault) does not necessarily force immediate shutdown of the network when operating IT systems. If a second independent error occurs (ground fault), the switching capacity of the circuit-breaker might be reduced.
This is the case if both ground faults occur in different phases and if one of the ground faults occurs on the line-side and the other on the secondary side of the circuit-breaker.
In order to maintain the short-circuit function of the circuitbreaker even with two independent ground faults (double ground faults), the reduced short-circuit breaking capacity with double ground faults must be taken into account in IT systems $I_{\text {cult }}$ (see technical specifications). If a ground fault is instantaneously recognized and remedied (ground-fault monitoring), the risk of double ground fault and thus reduced short-circuit breaking capacity $I_{\text {cult }}$ can be minimized.

Switching of DC currents

3RV1 circuit-breakers for alternating currents are also suitable for DC switching.
The maximum permissible DC current per conducting path must, however, be adhered to. Higher voltages require a series circuit with 2 or 3 conducting paths.
The response values of the overload release remain unchanged; the response values of a short-circuit release increase by approximately 30% for DC. The recommended circuits for DC switching can be seen in the table below.

SIRIUS Circuit-Breakers up to 100 A

General data

Recommended circuit for size SOO to S3 3RV1 circuit-breakers	Max. permissible DC voltage U

1) It is assumed that this circuit always provides safe cut-out even in the event of a double ground fault that bridges two contacts.

3RV16 voltage transformer circuit-breakers up to 3 A

The voltage transformer circuit-breaker protects the secondary side of voltage transformers used to connect protective devices with voltage-dependent starting. The circuit-breaker is used for distance protection with low-impedance starting. Special auxiliary contacts reliably prevent low-impedance starting from triggering distance protection if only one fault has occurred in the transformer line.

The voltage transformer circuit-breaker can also be used to safely disconnect the distance protection device from the voltage transformer. In this case, the special auxiliary contacts also prevent erratic triggering of the distance protection.
Additional fuses are not required. A "Fuse Failure Monitor" (FFM) is also not required.

Design

Assembly

The circuit-breakers are snap-mounted on a 35 mm mounting rail to EN 50022 . A mounting rail with a height of 15 mm is required for size S 3 circuit-breakers. A 75 mm rail can be used as an alternative for size S3.
S2 and S3 circuit-breakers can also be screwed directly onto a baseplate.

The 3RB19 00-0B push-in lugs are available for screw mounting of SOO and SO circuit-breakers.

Screw connection

3RV1 circuit-breakers of sizes SOO and SO are fitted with terminals with captive screws and clamping pieces, allowing the connection of 2 conductors with different cross-sections.
The box terminals of the S2 and S3 circuit-breakers also enable 2 conductors with different cross-sections to be connected. With the exception of S3 circuit-breakers which are equipped with 4 mm hexagon socket screws, all terminal screws are tightened with a Pozidriv screwdriver size 2.

The box terminals of the S3 circuit-breakers can be removed in order to connect conductors with cable lugs or connecting bars. A terminal cover is available as shock protection and to ensure that the required clearances and creepage distances are maintained if the box terminals are removed.

Cage Clamp connection

As an alternative to screw terminals, SOO circuit-breakers are also available with Cage Clamp connection.
This screwless connection technique, already familiar from terminal blocks, clamps the conductors using a cage tension spring and is shock-proof and vibration-proof.
Circuit-breakers with Cage Clamp connection allow independent connection of two conductors per terminal.

Circuit-breakers with Cage Clamp connection.

3RV16 voltage transformer circuit-breakers up to 3 A

The voltage transformer circuit-breaker widely corresponds with the SIRIUS 3RV1 circuit-breaker, size S00. Two special features are taken into account for safe prevention of false tripping of the distance protection device.

Auxiliary switch for blocking the distance protection

The main contacts of the circuit-breaker are opened if the voltage transformer circuit-breaker is tripped or switched off. The distance protection would falsely interpret low impedance as a fault, which results in immediate power cut-out within only a few milliseconds.
To prevent this fault response, special auxiliary contacts with a time-dependent assignment to the circuit-breaker's main contacts (see timing diagram) must be provided. The distance protection is blocked with the help of these auxiliary contacts and thus prevents false tripping.
An auxiliary switch for blocking the distance protection device is available as 1 changeover contact fitted permanently in the voltage transformer circuit-breaker. This changeover contact can be used as $1 \mathrm{NO}(11-14)$ or $1 \mathrm{NC}(11-12)$. Thanks to the high

Timing diagram of auxiliary switches for blocking distance protection

General data

contact stability of these auxiliary contacts at the lowest possible rated operational currents, they are also suitable for modern solid-state distance protection devices.
The laterally mounted auxiliary switches of the SIRIUS range can be used for signaling functions. They cannot be used for blocking the distance protection device.

Impedance across the main contacts

There is only minor current flow across the main contacts of the voltage transformer circuit-breaker. To ensure reliable functioning of the distance protection, transfer resistance of the main contacts must be minimal and nearly constant throughout the service life of the circuit-breaker.
This is implemented with suitable contacts and contact materials for the 3RV16 voltage transformer circuit-breaker.

Mounting

The circuit-breakers are snap-mounted on a 35 mm mounting rail to EN 50022. Push-in lugs are available for screw connection of the circuit-breakers (see Accessories for SIRIUS 3RV1 circuitbreakers).

Functions

Releases

3RV1 circuit-breakers are equipped with inverse-time delayed overload releases based on the bimetal principle and with instantaneous overcurrent releases (electromagnetic short-circuit releases).
The overload releases can be set in accordance with the load current. The overcurrent releases are permanently set to a value 13 times the rated current and thus enable trouble-free start-up of motors.
Circuit-breakers for line-side transformer protection are set to 20 times the rated current to prevent tripping as a result of high transformer inrush current.
The scale cover can be sealed to prevent unauthorized adjustments to the set current.

Trip classes

The trip classes of thermally delayed releases are based on the tripping time $\left(t_{\mathrm{A}}\right)$ at 7.2 times the operational current in cold state (excerpt from IEC 60947-4):

- CLASS 10A $2 \mathrm{~s}<t_{\mathrm{A}}<10 \mathrm{~s}$
- CLASS $104 \mathrm{~s}<t_{\mathrm{A}}<10 \mathrm{~s}$
- CLASS $206 \mathrm{~s}<t_{\mathrm{A}}<20 \mathrm{~s}$
- CLASS $309 \mathrm{~s}<t_{\mathrm{A}}<30 \mathrm{~s}$

The circuit-breaker must trip within this time!

Operating mechanisms

SOO circuit-breakers are activated by a rocker operating mechanism and S0, S2 and S3 circuit-breakers by a rotary operating mechanism. If the circuit-breaker trips, the rotary operating mechanism switches to the tripped position to indicate this. Before the circuit-breaker is reclosed, the rotary operating mechanism must be reset manually to the 0 position to prevent the breaker from closing by mistake before the fault has been cleared. The circuit-breaker can then only be set to the I position afterwards.
In the case of circuit-breakers with rotary operating mechanisms, an electrical signal can be output by an alarm switch to indicate that the circuit-breaker has tripped.
All operating mechanisms can be locked in the 0 position with a padlock (shackle diameter 3.5 mm to 4.5 mm).
The circuit-breaker isolating function conforms to IEC 60947-2.

General data

Technical specifications

Rated short-circuit breaking capacity $I_{c n}$ to IEC 60947-2

This table shows the rated ultimate short-circuit breaking capacity $I_{\text {cu }}$ and the rated service short-circuit breaking capacity $I_{\text {cs }}$ of the 3RV1 circuit-breakers with different inception voltages dependent of the rated current I_{n} of the circuit-breakers.

Circuit-breaker infeed is permissible at the upper or lower terminals without restricting the rated data. If the short-circuit current at the installation point exceeds that rated short-circuit breaking capacity of the circuit-breaker as specified in the table, a
back-up fuse is required. Alternatively, a circuit-breaker with a limiter function can be connected upstream.

The maximum rated current for the back-up fuse is specified in the tables. The rated ultimate short-circuit breaking capacity then applies as specified on the fuse.

Fuseless construction

Circuit-breaker contactor combinations for short-circuit currents up to 50 kA can be ordered in the form of fuseless load feeders in accordance with Part 6.

Short-circuit proof up to at 50 kA.

- No back-up fuse required, since short-circuit proof up to 100 kA .

1) 10% overvoltage
2) 5% overvoltage.
3) Back-up fuse only required if the short-circuit current at the installation point $>I_{\text {Cu }}$

SIRIUS Circuit-Breakers up to 100 A

Short-circuit breaking capacity $I_{\text {culT }}$ in the IT system (IT network) to IEC 60947-2

3RV1 circuit-breakers are suitable for use in IT systems. Values valid for triple-pole short-circuit are $I_{\text {cu }}$ and $I_{\text {cs }}$. In case of double ground fault on different phases at the input and output side of a circuit-breaker, the special short-circuit breaking capacity I cult applies. The specifications in the table below apply to 3RV1 cir-cuit-breakers.

General data

In the colored areas, $I_{\text {cult }}$ is 100 kA , or in some ranges it is 50 kA . Therefore the circuit-breakers are short-circuit proof in these ranges.
If the short-circuit current at the installation point exceeds that rated short-circuit breaking capacity of the circuit-breaker as specified in the table, a back-up fuse is required.
The maximum rated current for the back-up fuse is specified in the tables. The rated short-circuit breaking capacity then applies as specified on the fuse.

Circuit-breaker	Rated current In	up to AC $240 \mathrm{~V}^{1)}$		up to $\mathrm{AC} 400 \mathrm{~V}^{1)}$ / $415 \mathrm{~V}^{\text {2 }}$		up to AC $500 \mathrm{~V}^{1)} / 525 \mathrm{~V}^{2)}$		up to AC $690 \mathbf{V}^{1)}$	
		ICuIT kA		ICult kA	$\begin{aligned} & \begin{array}{l} \max . \text { fuse } \\ (\mathrm{gL} / \mathrm{gG})^{3 / 4)} \\ \hdashline \longleftarrow \end{array} \end{aligned}$	ICult kA	$\begin{aligned} & \text { max. fuse } \\ & (\mathrm{gLL/gG})^{3)} \\ & \hdashline \longleftarrow \end{aligned}$	ICult kA	$\left\lvert\, \begin{aligned} & \max . \text { fuse } \\ & \left.(\mathrm{gLL} / \mathrm{gG})^{3}\right) \\ & \mathrm{A} \end{aligned}\right.$
$\begin{aligned} & \hline \text { 3RV10 } 1 \\ & \text { 3RV16 11-0BD10 } \end{aligned}$	$\begin{array}{lll} 0.16 \ldots & 0.63 \\ 0.8 \end{array}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	-	100	\bigcirc	100	\bigcirc	100	-
			-	100	。	100	。	2	16
Size S00	$\begin{aligned} & 1 \\ & 1.25 \end{aligned}$	100	-	100		100			
			-		20		20	2	20
	1.6		-	2	20	2	20	2	20
	22.5	100	-	2	35	2	35	2	35
		100		2	35	2	35	2	35
	2.5 3.2	100	-	2	40	2	40	2	40
	4	100	-	2	40	2	40	2	40
	4	100	-	2	50	2	50	2	50
	6.38	100	-	2	50	2	50	2	50
		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	80	2	63	2	63	2	63
	8 10		$\begin{aligned} & 80 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	63	2	63	2	$\begin{aligned} & 63 \\ & 80 \end{aligned}$
3RV1. 2 Size S0	0.16 ... 0.63	100	\bigcirc	100	\bigcirc	100			-
							-	100	
	0.8	100	-	100		100			16
	1	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$		100			16
	$\begin{aligned} & 1.25 \\ & 1.6 \end{aligned}$				-	$\begin{aligned} & 8 \\ & 8 \end{aligned}$		6	20
		100		100			20		20
	$\begin{aligned} & 1.6 \\ & 2 \end{aligned}$	100		8	25	8	25		25
	2.5	100100	-		$\begin{aligned} & 25 \\ & 25 \end{aligned}$	8			25
	3.2		\bigcirc	8	32	8	32	6	32
	4	100	-	6	32	4	32	3	32
		100 100	-	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 32 \\ & 50 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	32 50	3 3	32 50
	8	100	-	6	50	4	50	3	50
	10	100	-	6	50	4	50	3	50
	12.5	100	\bigcirc	6	63	4	63	3	63
	16	50	80	4	63	3	63	2	63
	20	50	80	4	63	3	63	2	63
	22	50	80	4	63	3	63	2	63
	25	50	80	4	63	3	63	2	63
3RV1. 3	16	50	100	8	100	6	80	5	63
Size S2	20	50	125	8	100	6	80	5	63
	25	50	125	8	100	6	80	5	63
	32	50	125	6	125	4	100	3	80
	40	50	160	6	125	4	100	3	80
	45	50	160	6	125	4	100	3	80
	50	50	160	6	125	4	100	3	80
3RV1. 41	40	50	125	10	63	5	50	5	50
Size S3	50	50	125	8	80	3	63	3	63
	63	50	160	6	80	3	63	3	63
	75	50	160	5	100	2	80	2	80
	90	50	160	5	125	2	100	2	100
	100	50	160		125	2	100	2	100
3RV1. 42	16	100	-	12	63	6	50	6	50
Size S3	20	100	-	12	63	6	50	6	50
with increased	25	100	-	12	63	6	50	6	50
switching	32	100	-	12	63	6	50	6	50
	40	100	-	12	80	6	63	6	63
	50	100	-	10	100	4	80	4	80
	63	100	-	7.5	100	4	80	4	80
	75	100	-	6	125	3	100	3	100
	90	100	-	6	160	3	125	3	125
	100	100	-		160	3	125	3	125

Short-circuit proof down to min. 50 kA.

- No back-up fuse required, since short-circuit proof up to 100 kA .

1) 10% overvoltage.
2) 5% overvoltage.
3) Back-up fuse only required, if short-circuit current at the installation point $>$ cult.
4) Alternatively, fuseless limiter combinations for AC 690 V can also be used (see page 4/10).

SIRIUS Circuit-Breakers up to 100 A

General data

Limiter function with standard devices for AC 500 V and AC 690 V to IEC 60947-2

The table shows the rated ultimate short-circuit breaking capacity $I_{\text {cu }}$ and the rated service short-circuit breaking capacity $I_{\text {cs }}$ with an upstream standard circuit-breaker that fulfils the limiter function at AC 500 V and AC 690 V . The short-circuit breaking capacity can be increased significantly with an upstream standard circuit-breaker.

The circuit-breaker which is connected downstream must be set to the rated current of the load.

With circuit-breaker combination assemblies, note the clearance to grounded parts and between the circuit-breakers. Short-circuit proof wiring between the circuit-breakers must be ensured. The circuit-breakers can be mounted side-by-side in a modular arrangement

Standard circuitbreaker Type	Standard circuitbreaker with limiter function Type Rated current I_{n}	Rated current I_{n} A	up to AC $500 \mathrm{~V}^{1)}$ / $525 \mathrm{~V}^{\text {2) }}$		up to AC $690 \mathrm{~V}^{\text {1) }}$	
			I_{cu} kA	Ics kA	I_{cu} kA	$\left\lvert\, \begin{aligned} & I_{\mathrm{cs}} \\ & \mathrm{kA} \end{aligned}\right.$
$\text { 3RV10 } 2$ Size SO	$\begin{aligned} & \text { 3RV13 21-4DC10 } \\ & \text { Size S0 } \\ & I_{\mathrm{n}}=25 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline \text { up to } 1 \\ & 1.25 \\ & 1.6 \\ & 2 \\ & 2.5 \\ & 3.2 \\ & 4 \\ & 5 \\ & 6.3 \\ & 8 \\ & 10 \\ & 12.5 \\ & 16 \\ & 20 \\ & 22 \\ & 25 \\ & \hline \end{aligned}$	\circ \circ 0 0 \circ 0 0 0 0 0 100 100 100 100 100 100 100	$\begin{aligned} & \circ \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	\circ 50 50 50 50 50 50 20 20 20 20 20 20 20	\circ 0 \circ 25 25 25 25 25 25 10 10 10 10 10 10 10
3RV10 3 Size S2	$\begin{aligned} & \text { 3RV13 31-4HC10 } \\ & \text { Size S2 } \\ & I_{\mathrm{n}}=50 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 32 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	50 50 50 50 50 50	50 50 50 50 50 50	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$
$\text { 3RV10 } 4$ Size S3	$\begin{aligned} & \text { 3RV13 41-4HC10 } \\ & \text { Size S3 } \\ & I_{\mathrm{n}}=50 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & 40 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & \hline \end{aligned}$
3RV10 4 Size S3	$\begin{aligned} & \text { 3RV13 41-4MC10 } \\ & \text { Size S3 } \\ & I_{\mathrm{n}}=100 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 50 \\ & 63 \\ & 75 \\ & 90 \\ & 100 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$

Short-circuit proof up to at least 100 kA .

- No upstream circuit-breaker required since short-circuit proof up to 100 kA.

1) 10% overvoltage.
2) 5% overvoltage.

SIRIUS Circuit-Breakers up to 100 A

General data

Rules for mounting circuit-breakers

When mounting circuit-breakers, the following clearances must be maintained to grounded or live parts.

Rules for mounting circuit-breakers with limiter function

Standard mounting for SO, S2 and S3

SIRIUS Circuit-Breakers up to 100 A

General data

General technical specifications

Max. operating frequency per hour (motor starts)

1) Technical specifications on 3RV16 voltage transformer circuit-breaker is given on page 4/17.
2) Over $+60^{\circ} \mathrm{C}$ current reduction.
3) 500 V with molded-plastic enclosure.
4) Terminal compartment IPOO.
5) With appropriate accessories

Rated short-circuit breaking capacity $I_{\text {cn }}$ see table on page $4 / 8$.

SIRIUS Circuit-Breakers up to 100 A

General data

Conductor cross-sections for main circuit

Type		3RV1.	3RV1. 2	3RV1. 3	3RV1. 4
Type of connection		Screw connection		Screw connection with box terminal	
Terminal screw		Pozidriv size 2		Pozidriv size 2	Hexagon socket screw 4 mm
Prescribed tightening torque	Nm	$0.8 \ldots 1.2$	$2 \ldots 2.5$	$3 . . .4 .5$	$4 \ldots 6$
Conductor cross-sections, 1 or 2 conductors					
Solid	mm^{2}	$\begin{aligned} & 2 \times(0.5 \ldots 1.5), \\ & 2 \times(0.75 \ldots 2.5) \end{aligned}$	$\begin{aligned} & 2 \times(1 \ldots 2.5), \\ & 2 \times(2.5 \ldots 6) \end{aligned}$	$2 \times(0.75 \ldots 16)$	$2 \times(2.5 \ldots 16)$
Finely stranded with end sleeve	mm^{2}	$\begin{aligned} & 2 \times(0.5 \ldots 1.5), \\ & 2 \times(0.75 \ldots .2 .5) \end{aligned}$	$\begin{aligned} & 2 \times(1 \ldots 2.5), \\ & 2 \times(2.5 \ldots 6) \end{aligned}$	$\begin{aligned} & 2 \times(0.75 \ldots 16), \\ & 1 \times(0.75 \ldots 25) \end{aligned}$	$\begin{aligned} & 2 \times(2.5 \ldots 35), \\ & 1 \times(2.5 \ldots 50) \end{aligned}$
Stranded	mm^{2}	$\begin{aligned} & 2 \times(0.5 \ldots 1.5), \\ & 2 \times(0.75 \ldots 2.5) \end{aligned}$	$\begin{aligned} & 2 \times(1 \ldots 2.5), \\ & 2 \times(2.5 \ldots 6) \end{aligned}$	$\begin{aligned} & 2 \times(0.75 \ldots 25), \\ & 1 \times(0.75 \ldots 35) \end{aligned}$	$\begin{aligned} & 2 \times(10 \ldots 50), \\ & 1 \times(10 \ldots 70) \end{aligned}$
AWG cables, solid or stranded	AWG	$2 \times(18 \ldots 14)$	$2 \times(14 \ldots 10)$	$\begin{aligned} & 2 \times(18 \ldots 3), \\ & 1 \times(18 \ldots 2) \end{aligned}$	$\begin{aligned} & 2 \times(10 \ldots 1 / 0), \\ & 2 \times(10 \ldots .2 / 0) \end{aligned}$
Ribbon cable conductors (number x width x circumference)	mm	-	-	$2 \times(6 \times 9 \times 0.8)$	$2 \times(6 \times 9 \times 0.8)$
Removable box terminal ${ }^{1)}$					
With copper bars		-	-	-	
With cable lug					up to 2×70
Cage Clamp connections ${ }^{2)}{ }^{3)}$ (1 or 2 conductors connectable)					
Solid	mm^{2}	$2 \times(0.25 \ldots 2.5)$	-		
Finely stranded with end sleeve	mm^{2}	$2 \times(0.25 \ldots 1.5)$	-		
Finely stranded without end sleeve	mm^{2}	$2 \times(0.25 \ldots 2.5)$	-		
AWG cables, solid or stranded	AWG	$2 \times(24 \ldots 14)$			
Max. external diameter of the cable insulation: 3.6 mm .					
Permissible mounting position		any, acc. to IEC	0447 start com	nd "I" right-hand s	de or top

1) Cable lug and bar connection is also possible, after removal of the box terminals.
2) With conductor cross-sections of $\leq 1 \mathrm{~mm}^{2}$ an "insulation stopper" must be used (see accessories for "Contactors and contactor combinations").
3) Corresponding opening tool 8WA2803/8WA2804, see accessories.

SIRIUS Circuit-Breakers up to 100 A

General data

Permissible ratings of devices approved for North America (UL/CSA)

Circuit-breakers of the 3RV1 series are approved for UL/CSA and according to UL 508 and CSA 22.2 No. 14 they can also be used as a load feeder in combination with a contactor.
These circuit-breakers can be used as "Manual Motor Controllers" for "Group Installations", as "Manual Motor Controller Suitable for Tap Conductor Protection in Group Installations" and as "Self-Protected Combination Motor Controller" (Type E).

3RV1 circuit-breaker as "Manual Motor Controller"
If used as a "Manual Motor Controller", the circuit-breaker is always operated in combination with an upstream short-circuit protection device. As short-circuit-protection device, approved fuses or a circuit-breaker compliant with UL489/CSA 22.2 No. 5 can be used. These devices must be dimensioned in accordance with the National Electrical Code (UL) or Canadian Electrical Code (CSA). Approval of the 3RV as a Manual Motor Controller can be found under the following file numbers: UL File No. 47705, CSA Master Contract 165071, Product Class 321105.

Circuit-breaker	V	hp rating ${ }^{1)}$ for FLA ${ }^{2)}$ max.		Rated current $/ \mathrm{n}$	AC 240 V		AC $480 \mathrm{Y} / 277 \mathrm{~V}$		AC $600 \mathrm{Y} / 347 \mathrm{~V}$		
				UL	CSA	UL	CSA	UL	CSA		
Type		singlephase	threephase		A	$\begin{aligned} & \mathrm{lbc}{ }^{33} \\ & \mathrm{kA} \end{aligned}$	$\begin{aligned} & \mathrm{lbc}^{3)} \\ & \mathrm{kA} \end{aligned}$	$\begin{aligned} & \left.l_{b c}{ }^{3}\right) \\ & \mathrm{kA} \end{aligned}$	$\begin{aligned} & \left.l_{\mathrm{bc}}{ }^{3}\right) \\ & \mathrm{kA} \end{aligned}$	$\begin{aligned} & \left.\mathrm{l}_{\mathrm{bc}}{ }^{3}\right) \\ & \mathrm{kA} \end{aligned}$	$\begin{aligned} & \left.\mathrm{lbc}{ }^{3}\right) \\ & \mathrm{kA} \end{aligned}$
3RV10 11				$0.16 \ldots 2$	65	50	65	50	30	10	
3RV16 11-0BD10				2.5	65	50	65	50	30	10	
Size S00	115	1/2	-	3.2	65	50	65	50	30	10	
	200	$11 / 2$	3	4	65	50	65	50	30	10	
	230	2	3	5	65	50	65	50	30	10	
FLA ${ }^{2}$) max. $12 \mathrm{~A}, 600 \mathrm{~V}$	460	-	$71 / 2$	6.3	65	50	65	50	30	10	
	575/600	-	10	8	65	50	65	50	30	10	
NEMA Size 00				10	65	50	65	50	30	10	
				12	65	50	65	50	30	10	
3RV10 21 / 3RV11 21				0.16 ... 3.2	65	50	65	50	30	30	
3RV13 21				4	65	50	65	50	30	30	
				5	65	50	65	50	30	30	
Size SO	115	2	-	6.3	65	50	65	50	30	30	
	200	3	$71 / 2$	8	65	50	65	50	30	30	
FLA ${ }^{2}$) max. $25 \mathrm{~A}, 600 \mathrm{~V}$	230	5	$71 / 2$	10	65	50	65	50	30	30	
	460	-	15	12.5	65	50	65	50	30	30	
NEMA Size 1	575/600	-	20	16	65	50	65	50	30	30	
				20	65	50	65	50	30	30	
				22	65	50	65	50	30	30	
				25	65	50	65	50	30	30	
3RV10 31 / 3RV11 31				16	65	50	65	50	25	25	
3RV13 31				20	65	50	65	50	25	25	
Size S2	115	3	-	25	65	50	65	50	25	25	
	200	$7^{1 / 2}$	15	32	65	50	65	50	25	25	
	230	10	20	40	65	50	65	50	25	25	
FLA ${ }^{2}$) max. $50 \mathrm{~A}, 600 \mathrm{~V}$ NEMA Size 2	460	-	40	45	65	50	65	50	25	25	
	575/600	-	50	50	65	50	65	50	25	25	
3RV10 $41 / 3 R V 1042$				16	65	50	65	50	30	30	
3RV11 42				20	65	50	65	50	30	30	
3RV13 41 / 3RV13 42	115	10	-	25	65	50	65	50	30	30	
	200	20	30	32	65	50	65	50	30	30	
Size S3	230	20	40	40	65	50	65	50	30	30	
	460	-	75	50	65	50	65	50	30	30	
FLA ${ }^{2}$) max. $100 \mathrm{~A}, 600 \mathrm{~V}$	575/600	-	100	63	65	50	65	50	30	30	
				75	65	50	65	50	30	30	
NEMA Size 3				90	65	50	65	50	30	30	
				100	65	50	65	50	30	30	

1) hp rating = power rating in horse power (maximum motor rating).
2) $\operatorname{FLA}=$ Full Load Amps/Motor full load current.
3) Complies with "short-circuit breaking capacity" to UL/CSA.

SIRIUS Circuit-Breakers up to 100 A

3RV10 circuit-breaker as "Manual Motor Controller Suitable for Tap Conductor Protection in Group Installations"

The application as "Manual Motor Controller Suitable for Tap Conductor Protection in Group Installations" is only available from UL. CSA does not recognize this approval! When the cir-cuit-breaker is used as a "Manual Motor Controller Suitable for Tap Conductor Protection in Group Installations", it must always be combined with upstream short-circuit protection. As short-

General data

circuit-protection device, approved fuses or a circuit-breaker compliant with UL489 can be used.

These devices must be dimensioned in accordance with the National Electrical Code. The 3RV10 motor protection circuit-breakers are approved as "Manual Motor Controller Suitable for Tap Conductor Protection in Group Installations" under the following file number: UL File No. 47705.

Circuit-breaker		hp rating ${ }^{1)}$ for FLA $^{2)}$ max.		Rated current $/ \mathrm{n}$ A	$\begin{array}{\|l} \text { AC } 240 \mathrm{~V} \\ \mathrm{UL} \\ \mathrm{l}_{\mathrm{bc}}{ }^{3)} \\ \mathrm{kA} \end{array}$	$\begin{aligned} & \text { AC } 480 \mathrm{Y} / 277 \mathrm{~V} \\ & \text { UL } \\ & \mathrm{l}_{\mathrm{bc}}{ }^{3)} \\ & \mathrm{kA} \end{aligned}$	$\begin{aligned} & \text { AC } 600 \mathrm{Y} / 347 \mathrm{~V} \\ & \mathrm{UL} \\ & \mathrm{lbc}^{3)} \\ & \mathrm{kA} \end{aligned}$
Type	V	singlephase	threephase				
3RV10 11				0.16 ... 0.8	65	65	-
				1	65	65	-
Size S00	115	$1 / 3$	-	1.25	65	65	-
	200	$3 / 4$	2	2	65	65	-
	230	1	2	2.5	65	65	-
FLA ${ }^{2}$) max. $8 \mathrm{~A}, 480 \mathrm{~V}$	460	-	5	3.2	65	65	-
NEMA Size 00	575/600	-	-	4	65	65	-
				5	65	65	-
				6.3	65	65	-
				8	65	65	-
3RV10 21				0.16 ... 1.6	65	65	30
				2	65	65	30
				2.5	65	65	30
Size SO	115	2	-	3.2	65	65	30
	200	3	$71 / 2$	4	65	65	30
$\begin{aligned} & \text { FLA }^{2)} \text { max. } 22 \mathrm{~A}, 480 \mathrm{~V} \\ & 12.5 \mathrm{~A}, 600 \mathrm{~V} \end{aligned}$	230	3	$71 / 2$	5	65	65	30
	460	-	15	6.3	65	65	30
	575/600	-	10	8	65	65	30
NEMA Size 1				10	65	65	30
				12.5	65	65	30
				16	65	65	-
				20	65	65	-
				22	65	65	-
3RV10 31				16	65	65	25
				20	65	65	25
Size S2	115	3	-	25	65	65	25
	200	$71 / 2$	15	32	65	65	25
FLA ${ }^{2}$) max. $50 \mathrm{~A}, 600 \mathrm{~V}$	230	10	20	40	65	65	25
NEMA Size 2	460	-	40	45	65	65	25
	575/600	-	50	50	65	65	25
3RV10 4.				16	65	65	30
				20	65	65	30
Size S3	115	10	-	25	65	65	30
	200	20	30	32	65	65	30
$\begin{array}{r} \text { FLA }^{2)} \max .100 \mathrm{~A}, 480 \mathrm{~V} \\ 75 \mathrm{~A}, 600 \mathrm{~V} \end{array}$	230	20	40	40	65	65	30
	460	-	75	50	65	65	30
NEMA Size 3	575/600	-	75	63	65	65	30
				75	65	65	30
				90	65	65	-
				100	65	65	-

1) hp rating = Power rating in horse power (maximum motor rating).
2) $F L A=$ Full Load Amps/Motor full load current.
3) Complies with "short-circuit breaking capacity" to UL.

SIRIUS Circuit-Breakers up to 100 A

General data

3RV10 circuit-breaker as
"Self-Protected Combination Motor Controller (Type E)"
As of 16 July 2001, UL 508 demands a line-side 1-inch air distance and 2-inch creepage distance for "Self-Protected Combination Motor Controller".

Therefore, 3RV10 circuit-breakers of size S0 and S3 are approved to UL 508 in combination with the terminal blocks listed below.
The basic unit of 3RV10 circuit-breaker in size S2 conforms with the required air/creepage distances.

Circuit-breaker		hp rating ${ }^{1)}$ for FLA ${ }^{2)}$ max.		Rated current $/ \mathrm{n}$	up to AC 240 V		up to AC $480 \mathrm{Y} / 277 \mathrm{~V}$		up to AC $600 \mathrm{Y} / 347 \mathrm{~V}$			
			CSA			CSA	UL	CSA				
Type	V			singlephase	threephase	A	kA	kA	kA	kA	kA	kA
3RV10 21				0.16 ... 1.6	65	50	65	50	30	30		
+ 3RV19 28-1 ${ }^{4}$)				2	65	50	65	50	30	30		
Size S0	115	2	-	2.5	65	50	65	50	30	30		
	200	3	$71 / 2$	3.2	65	50	65	50	30	30		
	230	3	$71 / 2$	4	65	50	65	50	30	30		
$\begin{array}{r} \text { FLA }^{2)} \text { max. } 22 \mathrm{~A}, 480 \mathrm{~V} \\ 12.5 \mathrm{~A}, 600 \mathrm{~V} \end{array}$	460	-	15	5	65	50	65	50	30	30		
	575/600	-	10	6.3	65	50	65	50	30	30		
NEMA Size 1				8	65	50	65	50	30	30		
				10	65	50	65	50	30	30		
				12.5	65	50	65	50	30	30		
				16	65	50	65	50	-	-		
				20	65	50	65	50	-	-		
				22	65	50	65	50	-	-		
3RV10 31				16	65	50	65	50	25	25		
				20	65	50	65	50	25	25		
Size S2	115	3	-	25	65	50	65	50	25	25		
	200	$71 / 2$	15	32	65	50	65	50	25	25		
FLA ${ }^{2}$) max. $50 \mathrm{~A}, 600 \mathrm{~V}$	230	10	20	40	65	50	65	50	25	25		
	460	-	40	45	65	50	65	50	25	25		
NEMA Size 2	575/600	-	50	50	65	50	65	50	25	25		
3RV10 4.				16	65	50	65	50	30	30		
$+3 R T 19 \text { 46-4GA07 }{ }^{4}$				20	65	50	65	50	30	30		
	115	10	-	25	65	50	65	50	30	30		
Size S3	200	20	30	32	65	50	65	50	30	30		
FLA ${ }^{2)}$ max. $100 \mathrm{~A}, 480 \mathrm{~V}$	230	20	40	40	65	50	65	50	30	30		
$75 \mathrm{~A}, 600 \mathrm{~V}$	460	-	75	50	65	50	65	50	30	30		
	575/600	-	75	63	65	50	65	50	30	30		
NEMA Size 3				75	65	50	65	50	30	30		
				90	65	50	65	50	-	-		
				100	65	50	65	50	-	-		

1) hp rating = Power rating in horse power (maximum motor rating).
2) $F L A=$ Full Load Amps/Motor full load current.
3) Complies with "short-circuit breaking capacity" to UL/CSA.
4) Not required for CSA.

Ratings of the auxiliary switches and alarm switches				
Type		Lateral auxiliary switch with 1 NO +1 NC, 2 NO, $2 \mathrm{NC}, 2 \mathrm{NO}+2 \mathrm{NC}$ and alarm switch	Transverse auxiliary switch with 1 changeover contact	Transverse auxiliary switch with 1 NO + 1 NC, 2 NC
Max. rated voltage				
- to NEMA (UL) - to NEMA (CSA)	$\begin{aligned} & A C V \\ & A C V \end{aligned}$	$\begin{aligned} & 600 \\ & 600 \\ & \hline \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \end{aligned}$
Continuous current Switching capacity	A	$\begin{aligned} & \hline 10 \\ & \text { A600 } \\ & \text { Q300 } \end{aligned}$	5 B600 R300	$\begin{aligned} & 2.5 \\ & \text { C300 } \\ & \text { R300 } \end{aligned}$

SIRIUS Circuit-Breakers up to 100 A

General data

Voltage converter circuit-breakers

General technical specifications

Type		3RV16 11-1AG14	3RV16 11-1CG14	3RV16 11-1DG14
Rated current I_{n}	A	1.4	2.5	3
Ambient temperature - Storage/transport - Operation	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$-50 \ldots+80$ $-20 \ldots+60$ (up to $+70^{\circ} \mathrm{C}$ is possible with derating)		
Rated operating voltage $\boldsymbol{U}_{\text {e }}$	V	400		
Rated frequency	Hz	$16^{2 / 3} \ldots 60$		
Rated insulation voltage $\boldsymbol{U}_{\mathbf{i}}$	V	690		
Short-circuit breaking capacity $I_{\text {Cu }}$ at AC 400 V	kA	50		
Set value of the thermal overload release	A	1.4	2.5	3
Operating value of the instantaneous overcurrent release	A	$6 \pm 20 \%$	10.5 $\pm 20 \%$	$20 \pm 20 \%$
Tripping time of the instantaneous overcurrent release	ms	approx. 6 at 12 A	approx. 6 at 20 A	approx. 6 at 40 A
Internal resistance - in cold state - in heated state	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & >0.25 \pm 6.5 \% \\ & >0.30 \pm 6.5 \% \end{aligned}$		
Shock resistance acc. to IEC 60068 Part 2-27	g	15		
Degree of protection acc. to IEC 60529		IP20		
Touch protection acc. to DIN VDE 0106-100		Finger-safe		
Endurance - mechanical - electrical	Operating cycles	$\begin{aligned} & 10000 \\ & 10000 \end{aligned}$		
Permissible mounting position		any		

Conductor cross-sections, main circuit, 1 or 2 conductors

Type		3RV16 11-1AG14	3RV16 11-1CG14	3RV16 11-1DG14
Terminal type Terminal screw Solid Finely stranded with end sleeve Stranded	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	Screw connection Pozidriv size 2		
Auxiliary switches for blocking the distance protection				
- with defined lateral assignment for blocking distance protection		1 changeover contact (for use as 1 NO or 1 NC), solid-state compatible		
- Rated operating voltage U_{e} Alternating voltage - Rated operating current $I_{\mathrm{e}} / \mathrm{AC}-14$ at $U_{\mathrm{e}}=250 \mathrm{~V}$ - Rated operating current $I_{\mathrm{e}} / \mathrm{AC}-14$ at $U_{\mathrm{e}}=125 \mathrm{~V}$	$\begin{aligned} & \text { V } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 250 \\ & 0.5 \\ & 1 \\ & \hline \end{aligned}$		
- Rated operating voltage U_{e} Direct voltage L/R 200 ms - Rated operating current $I_{\mathrm{e}} / \mathrm{DC}-13$ at $U_{\mathrm{e}}=250 \mathrm{~V}$ - Rated operating current $I_{\mathrm{e}} / \mathrm{DC}-13$ at $U_{\mathrm{e}}=125 \mathrm{~V}$	$\begin{aligned} & \text { V } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 250 \\ & 0.27 \\ & 0.44 \\ & \hline \end{aligned}$		
Short-circuit protection for auxiliary circuit				
- Fuse gL/gG - Miniature circuit-breaker, C characteristic	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 10 \\ & 6 \text { (prospective short-circuit current }<0.4 \mathrm{kA} \text {) } \end{aligned}$		
Auxiliary switches for other signaling functions				

[^1]
General data

Characteristics

The time/current characteristic, the current limiting characteristics and the $P^{2} t$ characteristics were determined according to IEC 60947.
The tripping characteristic of the inverse-time delayed overload release (thermal overload releases, 'a' releases) for DC and AC with a frequency of 0 Hz to 400 Hz .
The characteristics apply to the cold state; at operating temperature, the tripping times of the thermal releases are reduced to approximately 25 \%.
Under normal operating conditions, all three poles of the device must be loaded. The three main conducting paths must be connected in series in order to protect single-phase or DC loads.
With 2-pole and 3-pole loading, the maximum deviation in the tripping time of 3 times the setting current and upwards is $\pm 20 \%$ and thus in accordance with VDE 0165.
The tripping characteristics for the instantaneous, electromagnetic overcurrent releases (short-circuit releases, ' n ' releases) are based on the rated current I_{n} that also represents the maximum value of the setting range for circuit-breakers with adjustable overload releases. If the current is set to a lower value, the tripping current of the ' n ' release is increased by a corresponding factor.
The characteristics of the electromagnetic overcurrent releases apply to frequencies of $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$. Appropriate correction factors must be used for lower frequencies down to $162 / 3 \mathrm{~Hz}$, for higher frequencies up to 400 Hz and for DC.
The shown characteristic curve for the circuit-breaker relates to a specific setting range. It is, however, also valid as a schematic representation of circuit-breakers with other current ranges.
Time/current characteristics, current limiting characteristics and $P^{2} t$ curves can be ordered from "Technical Assistance" (e-mail: nst.technical-assistance@siemens.com).

Schematic representation of typical time/current characteristic of 3RV10

3RV16 voltage transformer circuit-breakers up to 3 A

The specified tripping characteristics of the thermal overload release (a) correspond to the mean value of the scatter band in the cold state. At operating temperature, these times are reduced to approximately 25% of the specified values.
The characteristic curves below are schematic representations. Precise characteristic curves are available from "Technical Assistance" (e-mail: nst.technical-assistance@siemens.com).

(1) $1.4 \mathrm{~A} / 6 \mathrm{~A}$
(2) $2.5 \mathrm{~A} / 10.5 \mathrm{~A}$
(3) $3 \mathrm{~A} / 20 \mathrm{~A}$
a) Thermal overload release
b) Instantaneous electromagnetic overcurrent release

SIRIUS Circuit-Breakers up to 100 A

General data

Circuit diagrams

Internal circuit diagrams

Circuit-breakers

3RV10.
3RV14.
3RV16 11-OBD10

3RV11..

3RV13..

3RV16 voltage transformer circuitbreakers up to 3 A

Typical circuits

3RV11 circuit-breaker with overload relay function

S1 OFF pushbutton
S2 ON pushbutton
K1 Latching contact
F1; F2 Fuses gL/gG 6A
Q1 3RV11 circuit-breaker

3RV16 voltage transformer circuit-breakers up to 3 A

Note:
When using the NC contact to connect the voltage transformer circuit-breaker, the binary input of the distance protection device (Siemens 7 SA xxx) should be set to "active without voltage". This type of connection is used for additional monitoring of correct wiring.

SIRIUS Circuit-Breakers up to 100 A

For motor protection

Selection and ordering data

Class 10, without/with auxiliary switch

1) Recommended values for standard 4-pole motors at AC 50 Hz 400 V . The actual start-up data and ratings for the motor to be protected are relevant
2) Weights are specified for the variant with auxiliary switch.

Auxiliary switches can also be ordered separately
(see "Mountable accessories").
For multi-unit packing and reusable packaging, see "Appendix"

SIRIUS Circuit-Breakers up to 100 A

For motor protection

Class 10, without auxiliary switch

	Rated current	Suitable for three-phase induction motors ${ }^{1)}$ with P	Current setting range Thermal overload release	Instantaneous overcurrent release	Short-circuit breaking capacity at AC 400 V	DT	Screw connection	PS*	Weight per PU approx
			\square		$I_{\text {cu }}$		Order No.		
	A	kW	A	A	kA				kg
Size S2									
	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 32 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & 11 \\ & 15 \end{aligned}$	$\begin{aligned} & 11 \ldots . \\ & 14 \\ & 14 . \\ & 18 \\ & 18 \\ & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 208 \\ & 260 \\ & 325 \\ & 416 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\stackrel{i}{i}$	3RV10 31-4AA10 3RV10 31-4BA10 3RV10 31-4DA10 3RV10 31-4EA10	1 unit 1 unit 1 unit 1 unit	$\begin{aligned} & 1.040 \\ & 1.040 \\ & 1.030 \\ & 1.020 \end{aligned}$
\leq	$\begin{aligned} & 40 \\ & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 28 \ldots 40 \\ & 36 \ldots 45 \\ & 40 \ldots 50 \end{aligned}$	$\begin{aligned} & 520 \\ & 585 \\ & 650 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$		3RV10 31-4FA10 3RV10 31-4GA10 3RV10 31-4HA10	1 unit 1 unit 1 unit	$\begin{aligned} & 1.040 \\ & 1.030 \\ & 1.020 \end{aligned}$
Size S3									
	$\begin{aligned} & 40 \\ & 50 \\ & 63 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 22 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \ldots 40 \\ & 36 \ldots 50 \\ & 45 \ldots 63 \end{aligned}$	$\begin{array}{r} 520 \\ 650 \\ 819 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$	$\stackrel{\rightharpoonup}{\nabla}$	3RV10 41-4FA10 3RV10 41-4HA10 3RV10 41-4JA10	1 unit 1 unit 1 unit	$\begin{aligned} & 2.210 \\ & 2.240 \\ & 2.240 \end{aligned}$
-	$\begin{aligned} & \hline 75 \\ & 90 \\ & 100 \end{aligned}$	$\begin{aligned} & 37 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 57 \ldots 75 \\ & 70 \ldots 90 \\ & 80 \ldots 100 \end{aligned}$	$\begin{aligned} & 975 \\ & 1170 \\ & 1235 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	i	3RV10 41-4KA10 3RV10 41-4LA10 3RV10 41-4MA10	1 unit 1 unit 1 unit	$\begin{aligned} & 2.250 \\ & 2.280 \\ & 2.290 \end{aligned}$
Size S3, with increased switching capacity									
	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 32 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & 11 \\ & 15 \end{aligned}$	$\begin{aligned} & 11 \ldots 16 \\ & 14 \ldots .20 \\ & 18 \ldots .25 \\ & 22 \ldots .32 \end{aligned}$	$\begin{aligned} & 208 \\ & 260 \\ & 325 \\ & 416 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\stackrel{i}{i}$	3RV10 42-4AA10 3RV10 42-4BA10 3RV10 42-4DA10 3RV10 42-4EA10	1 unit 1 unit 1 unit 1 unit	$\begin{aligned} & 2.170 \\ & 2.180 \\ & 2.210 \\ & 2.210 \end{aligned}$
\Leftrightarrow	$\begin{aligned} & \hline 40 \\ & 50 \\ & 63 \end{aligned}$	$\begin{aligned} & \hline 18.5 \\ & 22 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \ldots 40 \\ & 36 \ldots 50 \\ & 45 \ldots 63 \end{aligned}$	$\begin{aligned} & 520 \\ & 650 \\ & 819 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	i	3RV10 42-4FA10 3RV10 42-4HA10 3RV10 42-4JA10	1 unit 1 unit 1 unit	$\begin{aligned} & 2.200 \\ & 2.230 \\ & 2.250 \\ & \hline \end{aligned}$
x^{2}	$\begin{aligned} & \hline 75 \\ & 90 \\ & 100 \end{aligned}$	$\begin{aligned} & 37 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 57 \ldots 75 \\ & 70 \ldots 90 \\ & 80 \ldots 100 \end{aligned}$	$\begin{aligned} & 975 \\ & 1170 \\ & 1235 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$		3RV10 42-4KA10 3RV10 42-4LA10 3RV10 42-4MA10	1 unit 1 unit 1 unit	$\begin{aligned} & 2.260 \\ & 2.280 \\ & 2.270 \end{aligned}$

Class 20, without auxiliary switch

Size S2									
	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 32 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & 11 \\ & 15 \end{aligned}$		$\begin{aligned} & 208 \\ & 260 \\ & 325 \\ & 416 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	3RV10 31-4AB10 3RV10 31-4BB10 3RV10 31-4DB10 3RV10 31-4EB10	1 unit 1 unit 1 unit 1 unit	$\begin{aligned} & 1.060 \\ & 1.070 \\ & 1.050 \\ & 1.060 \\ & \hline \end{aligned}$
	$\begin{aligned} & 40 \\ & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 28 \ldots 40 \\ & 36 \ldots 45 \\ & 40 \ldots 50 \end{aligned}$	$\begin{aligned} & 520 \\ & 585 \\ & 650 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	3RV10 31-4FB10 3RV10 31-4GB10 3RV10 31-4HB10	1 unit 1 unit 1 unit	$\begin{aligned} & 1.070 \\ & 1.070 \\ & 1.070 \end{aligned}$
Size S3, with increased switching capacity									
	$\begin{aligned} & 40 \\ & 50 \\ & 63 \end{aligned}$	$\begin{aligned} & 18.5 \\ & 22 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 28 \ldots 40 \\ & 36 \ldots 50 \\ & 45 \ldots 63 \end{aligned}$	$\begin{aligned} & 520 \\ & 650 \\ & 819 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	3RV10 42-4FB10 3RV10 42-4HB10 3RV10 42-4JB10	1 unit 1 unit 1 unit	$\begin{aligned} & 2.220 \\ & 2.260 \\ & 2.270 \\ & \hline \end{aligned}$
	$\begin{aligned} & \hline 75 \\ & 90 \\ & 100 \end{aligned}$	$\begin{aligned} & 37 \\ & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 57 \ldots 75 \\ & 70 \ldots 90 \\ & 80 \ldots 100 \end{aligned}$	$\begin{aligned} & 975 \\ & 1170 \\ & 1235 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	3RV10 42-4KB10 3RV10 42-4LB10 3RV10 42-4MB10	1 unit 1 unit 1 unit	$\begin{aligned} & 2.260 \\ & 2.310 \\ & 2.320 \end{aligned}$

1) Recommended values for standard 4-pole motors at AC 50 Hz 400 V . The actual start-up data and ratings for the motor to be protected are relevant.
Auxiliary switches can be ordered separately
(see "Mountable accessories").
Multi-unit/reusable packaging, see "Appendix".

SIRIUS Circuit-Breakers up to 100 A

For motor protection with overload relay function

Selection and ordering data

CLASS 10, with overload relay function (automatic reset), without auxiliary switch

1) Recommended values for standard 4-pole motors at AC 50 Hz 400 V . The actual start-up data and ratings for the motor to be protected are relevant.
2) Accessories for mounting on the right (for series S0 to S3) and 3RV19 15 three-phase busbars (for size SO) cannot be used.
Auxiliary switches can be ordered separately
(see "Mountable accessories").
Multi-unit/reusable packaging, see "Appendix".

SIRIUS Circuit-Breakers up to 100 A

For starter combinations

Selection and ordering data
Without auxiliary switch

[^2] used.

Auxiliary switches can be ordered separately (see "Mountable accessories").
Multi-unit/reusable packaging, see "Appendix".

SIRIUS Circuit-Breakers up to 100 A

For protection of transformers

Selection and ordering data

Class 10, without auxiliary switch

Circuit-breakers for the protection of transformers with high inrush current.

Auxiliary switches can be ordered separately (see "Mountable accessories").
Multi-unit/reusable packaging, see "Appendix".

SIRIUS Circuit-Breakers up to 100 A

For fuse monitoring

Selection and ordering data

Without auxiliary switch

Multi-unit/reusable packaging, see "Appendix".
The auxiliary release required for signaling can be ordered separately.

	Type	Version	DT	Order No.	PS*	Weight per PU approx
						kg
Mountable auxiliary switches						
eoce	Transverse auxiliary switch with screw connection Lateral auxiliary switch with screw connection	$\begin{aligned} & 1 \mathrm{NO}+1 \mathrm{NC} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$		3RV19 01-1E 3RV19 01-1A	1 unit 1 unit	0.018 0.045

For further auxiliary switches, see "Mountable accessories".

SIRIUS Circuit-Breakers up to 100 A

For distance protection

Selection and ordering data

Voltage transformer circuit-breaker with auxiliary switch

	Rated current	Thermal overload release	Instantaneous overcurrent release	Auxiliary switch integrated in the switch, transverse	Short-circuit breaking capacity at AC 400 V	DT	Screw connection	PS*	Weight per PU approx.
	I_{n}	\square	$1>$		$I_{\text {cu }}$		Order No.		
	A	A	A		kA				kg
Size S00									
	$\begin{aligned} & 1.4 \\ & 2.5 \\ & 3 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.5 \\ & 3 \end{aligned}$	$\begin{aligned} & 6 \\ & 10.5 \\ & 20 \end{aligned}$	$\begin{aligned} & 1 \mathrm{CO} \\ & 1 \mathrm{CO} \\ & 1 \mathrm{CO} \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	3RV16 11-1AG14 3RV16 11-1CG14 3RV16 11-1DG14	1 unit 1 unit 1 unit	$\begin{aligned} & 0.314 \\ & 0.318 \\ & 0.315 \end{aligned}$
	Type		Versi			DT	Order No.	PS*	Weight per PU approx.
									kg
Laterally mountable auxiliary switches for other signaling purposes									
\square	Lateral auxiliar	y switch ${ }^{1)}$	1 NO	+ 1 NC		-	3RV19 01-1A	1 unit	0.045

1) For further lateral auxiliary switches, see "Mountable accessories".

Further information

Conversion of voltage transformer circuit-breakers 3VU13 to 3RV1
The previous version of the 3VU13 voltage circuit-breakers are no longer available.
The 3RV1 voltage transformer circuit-breakers will be offered as replacement types.

Previous type	Replacement type
3VU13 11-6HR00 \rightarrow	3RV16 11-1CG14
3VU13 21-6HR00 \rightarrow	3RV16 11-1CG14 + 3RV19 01-1A
3VU13 11-6JR00 \rightarrow	3RV16 11-1DG14

Overview

Mounting location and function

The 3RV1 circuit-breakers have three main contact elements. In order to achieve maximum flexibility, auxiliary switches, alarm switches, auxiliary releases and isolator modules can be supplied separately.

Front	Transverse auxiliary switch	An auxiliary contact block can be inserted transversely on the front. The overall width of the circuit-breakers remains unchanged. 29
Note:	$1 \mathrm{NO}+1 \mathrm{NC}$	
A maximum of 4 auxiliary contacts with auxiliary switches can be attached to each circuitbreaker.	or	
	2 NO	
	or 1 changeover contact	
Left-hand side	Lateral auxiliary switch (2 contacts)	One of the three auxiliary switches can be mounted laterally for each circuit-breaker. The contacts of the auxiliary switch close and open together with the main contacts of the circuit-breaker. The overall width of the lateral auxiliary switch with 2 contacts is 9 mm .
	$\begin{aligned} & 1 \mathrm{NO}+1 \mathrm{NC} \\ & \text { or } \\ & 2 \mathrm{NO} \\ & \text { or } \\ & 2 \mathrm{NC} \end{aligned}$	
	Lateral auxiliary switch (4 contacts)$2 \mathrm{NO}+2 \mathrm{NC}$	One auxiliary switch can be mounted laterally for each circuit-breaker. The contacts of the auxiliary switch close and open together with the main contacts of the circuitbreaker. The overall width of the lateral auxiliary switch with 4 contacts is 18 mm .
Notes: - Auxiliary switches (2 contacts) and alarm switches can be mounted separately or together. - A maximum of 4 auxiliary contacts with auxiliary switches can be attached to each circuitbreaker.	Alarm switch for sizes S0, S2 and S3	One alarm switch can be mounted at the side of each circuit-breaker with a rotary operating mechanism.
	Trip $1 \mathrm{NO}+1 \mathrm{NC}$ Short-circuit 1 NO + 1 NC	The alarm switch has two contact systems.
		One contact system always signals tripping irrespective of whether this was caused by a short-circuit, an overload or an auxiliary release. The other contact system only switches in the event of a short circuit. There is no signaling as a result of switching off with the handle.
		In order to be able to switch on the circuit-breaker again after a short-circuit, the alarm switch must be reset manually after the error cause has been eliminated.
		The overall width of the alarm switch is 18 mm .
Right-hand side	Shunt release	For remote-controlled tripping of the circuit-breaker. The release coil should only be energized for short periods (see circuit diagrams).
	or	
	Undervoltage release	Trips the circuit-breaker when the voltage is interrupted and prevents the motor from being restarted accidentally when the voltage is restored. Used for remote-controlled tripping of the circuit-breaker.
		Particularly suitable for EMERGENCY-STOP disconnection via the appropriate EMERGENCY-STOP button in accordance with IEC 60204-1.
	or	
Notes:	Undervoltage release with leading auxiliary contacts (2 NO)	Function and use as for the undervoltage release without leading auxiliary contacts, but with the following additional function: The auxiliary contacts will open in switch position OFF to deenergize the coil of the undervoltage release, thus interrupting power consumption. In the "tripped" position of the breaker, these auxiliary contacts are not guaranteed to open. The leading contacts permit the circuit-breaker to reclose. The overall width of the auxiliary release is 18 mm .
- One auxiliary release can be mounted per circuit-breaker.		
- Accessories cannot be mounted at the right-hand side of the 3RV11 circuitbreakers with overload relay function.		

Top	Isolator modules for circuit- breakers	Isolator modules can be mounted to the upper terminal end of circuit-breakers of sizes SO and S2.
Note:	The supply cable is connected to the circuit-breaker via the isolator module.	

SIRIUS Circuit-Breakers up to 100 A

Accessories

Mountable accessories

S00 circuit-breakers with mountable accessories

Circuit-breakers, sizes S0, S2 or S3, with mountable accessories

Mountable accessories for all sizes S00 ... S3
(1) Transverse auxiliary switch
(2) Lateral auxiliary switch with 2 contacts
(3) Lateral auxiliary switch with 4 contacts
(4) Shunt release
(5) Undervoltage release

Mountable accessories
6.1) Undervoltage release with leading auxiliary contacts
6.2) Undervoltage release with leading auxiliary contacts
for sizes
SOO

S0 ... S3

Mountable accessories
(7) Signalling switch
(8) Isolator module
for sizes
S0 ... S3
S0 and S2

SIRIUS Circuit-Breakers up to 100 A
 Accessories

Mountable accessories
Technical specifications
Front transverse auxiliary switches

Rated operating voltage I_{e}

- at AC-15, alternating voltage
- 24 V
- 230 V
- 400 V

- at AC-12 $=I_{\text {th }}$, alternating voltage
- 24 V
- 230 V
- 400 V
- 690 V
- at DC-13, direct voltage L/R 200 ms
- 24 V
- 48 V
- 110 V
- 220 V

	Switching capacity for different voltages	
	$\mathbf{1}$ changeover contact	$\mathbf{1 ~ N O}+\mathbf{1 ~ N C , ~ 2 ~ N O ~}$

Front transverse solid-state compatible auxiliary switches

		1 changeover contact
Rated operating voltage $\boldsymbol{U}_{\text {e }} \quad$ Alternating voltage	V	250
Rated operating current $I_{e} /$ AC-14 at $U_{e}=250 \mathrm{~V}$	A	0.5
Rated operating current $I_{\mathrm{e}} /$ AC-14 at $U_{\mathrm{e}}=125 \mathrm{~V}$	A	1
Rated operating voltage $U_{e} \quad$ Direct voltage L/R 200 ms	V	250
Rated operating current $I_{\mathrm{e}} /$ DC-13 at $U_{\mathrm{e}}=250 \mathrm{~V}$	A	0.27
Rated operating current $I_{\mathrm{e}} / \mathrm{DC}-13$ at $U_{\mathrm{e}}=125 \mathrm{~V}$	A	0.44

Lateral auxiliary switches

Switching capacity for different voltages
1 NO +1 NC, 2 NO, 2 NC, 2 NO + 2 NC and alarm switch

Rated operating voltage I_{e}

- at AC-15, alternating voltage
- 24 V
- 230 V
- 400 V
- at $\mathrm{AC}-12=I_{\text {th }}$, alternating voltage
$-24 V$
$-230 V$
- 230 V
- 690 V
- at DC, direct voltage L/R 200 ms
- 24 V
- 110 V
- 220 V
- 440 V

	Switching capacity for different voltages $1 \mathrm{NO}+1 \mathrm{NC}, 2 \mathrm{NO}, 2 \mathrm{NC}, 2 \mathrm{NO}+2 \mathrm{NC}$ and alarm switch
A	6
A	4
A	3
A	1
A	10
A	2
A	0.5
A	0.25
A	0.1

Auxiliary releases			
		Undervoltage release	Shunt release
- during pick-up - AC voltages	VA/W	20.2/13	
- DC voltages		20	$13 . .80$
- with continuous operation			
- AC voltages - DC voltages	$\begin{aligned} & \text { VA/W } \\ & \text { W } \end{aligned}$	$\begin{aligned} & 7.2 / 2.4 \\ & 2.1 \end{aligned}$	-
Response voltage			
- Trip	V	$0.35 \ldots 0.7 \times U_{\text {s }}$	$0.7 \ldots 1.1 \times U_{\text {s }}$
- Pick-up	V	$0.85 \ldots 1.1 \times U_{\text {s }}$	
Max. opening time	ms	20	20

Short-circuit protection for auxiliary and control circuits

- Fuses gL/gG

- Miniature circuit-breaker, C characteristic

A	10
A	$6{ }^{11}$

1) Prospective short-circuit current $<0.4 \mathrm{kA}$

SIRIUS Circuit-Breakers up to 100 A
 Accessories

Mountable accessories

Conductor cross-sections for auxiliary and control circuits

Type of connection

Terminal screw

Conductor cross-sections 1 or 2 conductors

- Solid
- Finely stranded with end sleeve
- Stranded
- AWG cables

Terminal type
Conductor cross-sections (1 or 2 conductors connectable)

- Solid
- Finely stranded with end sleeve
- Finely stranded without end sleeve
- AWG cables, solid and stranded

Max. external diameter of the cable insulation: 3.6 mm .

Screw connection

Pozidriv size 2
$\mathrm{mm}^{2} 2 \times(0.5 \ldots 1.5) / 2 \times(0.75 \ldots 2.5)$
$\mathrm{mm}^{2} 2 \times(0.5 \ldots 1.5) / 2 \times(0.75 \ldots 2.5)$ $\mathrm{mm}^{2} 2 \times(0.5 \ldots 1.5) / 2 \times(0.75 \ldots 2.5)$
AWG $2 \times(18 \ldots 14)$
Cage Clamp terminals ${ }^{1)}{ }^{\text {2) }}$

| mm^{2} | $2 \times(0.25 \ldots 2.5)$ |
| :--- | :--- | :--- |
| mm^{2} | $2 \times(0.25 \ldots 1.5)$ |
| mm^{2} | $2 \times(0.25 \ldots 2.5)$ |
| AWG | $2 \times(24 \quad \ldots 4)$ |

1) With conductor cross-sections of $\leq 1 \mathrm{~mm}^{2}$ an "insulation stopper" must be used, see accessories for "Contactors and contactor combinations".
2) Corresponding opening tool 8WA2803/8WA2804, see accessories.

Selection and ordering data

1) Each circuit-breaker can be fitted with one transverse and one lateral auxiliary switch. The lateral auxiliary switch with $2 \mathrm{NO}+2 \mathrm{NC}$ is used without transverse auxiliary switch.
2) Compatible with the following circuit-breakers:

3RV1.1 (size S00) as of version E01
3RV1.2 (size S0) as of version E04
3RV1.3 (size S2) as of version E04
3RV1.4 (size S3) as of version E04.

SIRIUS Circuit-Breakers up to 100 A
 Accessories

Mountable accessories

	Type	Version	For circuit-breakers Size	DT	Screw connection Order No.	PS*	Weight per PU approx. kg
Alarm switch ${ }^{1)}$							
3RV19 21-1M	Alarm switch	Separate tripped and shortcircuit alarms, $1 \mathrm{NO}+1 \mathrm{NC}$.	S0, S2, S3	-	3RV19 21-1M	1 unit	0.094
Isolator module							
3RV19 38-1A with padlock	Isolator module	Visible isolating distance for isolating individual circuitbreakers from the network, lockable in isolating position.	$\begin{aligned} & \text { S0 } \\ & \text { S2 } \end{aligned}$	-	3RV19 28-1A 3RV19 38-1A	1 unit 1 unit	$\begin{aligned} & 0.157 \\ & 0.324 \end{aligned}$

1) One alarm switch can be mounted to the left of each circuit-breaker.

	Rated control supply voltage U_{s}					For circuitbreakers Size	DT	Screw connection	PS*	Weight per PU approx.
	$\begin{aligned} & \mathrm{AC} \\ & 50 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \mathrm{AC} \\ & 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \mathrm{AC} \\ & 50 / 60 \mathrm{~Hz} \\ & 100 \% \mathrm{ON}^{1)} \end{aligned}$	$\begin{aligned} & \mathrm{AC} \\ & 50 / 60 \mathrm{~Hz}, \\ & \mathrm{DC} \\ & 5 \mathrm{~s} \mathrm{ON}^{2)} \end{aligned}$	DC					
	V	V	V	V	V			Order No.		kg
Auxiliary releases ${ }^{3}$										
	Under 24 110 -4) 230 400 415 500	Itage re -4) 120 208 240 480 575	ases		24	$\begin{aligned} & \text { S00, S0, } \\ & \text { S2, S3 } \end{aligned}$	A A A A - - A A	3RV19 02-1AB4 3RV19 02-1AB0 3RV19 02-1AF0 3RV19 02-1AM1 3RV19 02-1AP0 3RV19 02-1AV0 3RV19 02-1AV1 3RV19 02-1AS0	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	0.138 0.134 0.134 0.128 0.131 0.127 0.129 0.128
	Undervoltage release with early-make auxiliary contacts 2 NO									
	$\begin{aligned} & 230 \\ & 400 \\ & 415 \\ & 230 \\ & 400 \\ & 415 \end{aligned}$	$\begin{aligned} & 240 \\ & -41 \\ & 480 \\ & 240 \\ & -41 \\ & 480 \end{aligned}$				S00 SO, S2, S3	A A A A A A	3RV19 12-1CP0 3RV19 12-1CV0 3RV19 12-1CV1 3RV19 22-1CP0 3RV19 22-1CV0 3RV19 22-1CV1	1 unit 1 unit	$\begin{aligned} & 0.140 \\ & 0.137 \\ & 0.139 \\ & 0.139 \\ & 0.136 \\ & 0.138 \end{aligned}$
	Shunt releases									
3RV19 12-1CP0			$\begin{aligned} & 20 \ldots 24 \\ & 90 \ldots 110 \\ & 210 \ldots 240 \\ & 350 \ldots 415 \\ & 500 \end{aligned}$	$\begin{aligned} & 20 \ldots 70 \\ & 70 \ldots 190 \\ & 190 \ldots 330 \\ & 330 \ldots 500 \\ & 500 \ldots \end{aligned}$		$\begin{aligned} & \text { S00, SO, } \\ & \text { S2, S3, } \end{aligned}$	A A A A	3RV19 02-1DB0 3RV19 02-1DF0 3RV19 02-1DP0 3RV19 02-1DV0 3RV19 02-1DS0	1 unit 1 unit 1 unit 1 unit 1 unit	$\begin{aligned} & 0.133 \\ & 0.135 \\ & 0.130 \\ & 0.126 \\ & 0.126 \end{aligned}$

1) The voltage range is valid for 100% (infinite) duty cycle.

The response voltage is at 0.9 the lower limit of the voltage range.
2) The voltage range is valid for 5 s duty cycle at $\mathrm{AC} 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ and DC.

The response voltage is at 0.85 the lower limit of the voltage range.
3) One auxiliary release can be mounted to the right of each circuit-breaker.
4) Not a usual mains voltage.

SIRIUS Circuit-Breakers up to 100 A
 Accessories

Mountable accessories

Circuit diagrams

Internal connections

Undervoltage release with leading auxiliary contacts
3RV19 12-1C
3RV19 22-1C

Lateral auxiliary switches with 2 contacts

3RV19 01-1A
3RV19 01-2A

3RV19 01-1B 3RV19 01-2B

3RV19 01-1C 3RV19 01-2C

Circuit diagrams

Undervoltage release

Typical circuits

3RV1 circuit-breaker with 3RV19 21-1M alarm switch

Transverse auxiliary switches

3RV19 01-1D
3RV19 01-1G

3RV19 01-1E 3RV19 01-2E

3RV19 01-1F

Lateral auxiliary switch with 4 contacts

3RV19 01-1J

Alarm switch

3RV19 21-1M

Shunt release

Circuit-breakers tripped by means of pushbutton or EMERGENCY-STOP button in the system

SIRIUS Circuit-Breakers up to 100 A

Accessories

Busbar accessories

Overview

Insulated three-phase busbar system

Three-phase busbar systems provide an easy and time-saving means of feeding 3RV1 circuit-breakers with screw-type terminals. Different designs are available for sizes $\mathrm{SOO}, \mathrm{S} 0$ and S 2 and can be used for the various different types of circuit-breakers. The only exceptions are the 3RV19 15 three-phase busbar systems, which are not suitable for the 3RV11 circuit-breakers with overload relay function.
The busbars are suitable for between 2 and 5 circuit-breakers. However, any kind of extension is possible by clamping the tags of an additional busbar (rotated by 180°) underneath the terminals of the respective last circuit-breaker. Different sized circuitbreakers cannot be clamped together due to the different dimensions. Special connectors are available for connecting three-phase busbars for SO circuit-breakers to busbars for SOO circuit-breakers.

Busbars with larger modular spacing can be used for circuitbreakers with laterally mounted accessories. The circuit-breakers are supplied by appropriate line-side terminals.

3-phase busbar system, size S2

3-phase busbar system, size SOO

3-phase busbar system, with example for combining sizes SOO and S0

The three-phase busbar systems are finger-safe. They are designed for any short-circuit stress which can occur at the load side of connected circuit-breakers.

For 3-phase busbar systems for Cage Clamp connection, see "Cage Clamp infeed system".

Busbar adapters

The circuit-breakers are mounted directly with the aid of busbar adapters on busbar systems with 40 mm and 60 mm center-line spacing in order to save space and to reduce infeed times and costs.

Busbar adapters for busbar systems with 40 mm center-line spacing are suitable for copper busbars with a width of 12 mm to 15 mm , while those with 60 mm center-line spacing are suitable for copper busbars with a width of 12 mm to 30 mm . The busbars can be 4 to 5 mm or 10 mm thick. The circuit-breakers are snapped onto the adapter and connected on the line side. This prepared unit is then plugged directly onto the busbar system, and is thus connected both mechanically and electrically at the same time.

Further busbar adapters for snap-mounting direct-on-line starters and reversing starters as well as additional accessories such as line terminals and outgoing terminals, busbar copper, etc., can be found under "Distribution/busbar systems and controlgear".

SIRIUS circuit-breakers and load feeders with busbar adapters snapped onto busbars

SIRIUS Circuit－Breakers up to 100 A

Accessories

Busbar accessories

Selection and ordering data

Insulated three－phase busbar system

1）Not suitable for 3RV11 circuit－breakers with overload relay function．Com－ mon clamping of SOO and SO circuit－breakers is not possible，due to the different modular spacings and terminal heights．The 3RV19 15－5DB con－ nector is available for connecting busbars from size S0 to size S00．

2）Auxiliary releases and lateral auxiliary switches cannot be used in combi－ nation．

	Version	Modular spacing	For circuit－breakers Size	DT	Order No．	PS＊	Weight per PU approx．
		mm					kg
Connector for 3－phase busbars							
納納 3RV19 15－5DB	For connecting three－phase busbars for circuit－breakers of size S0（left）to size S00（right）	45	S00，S0	－	3RV19 15－5DB	1 unit	0.045

	Conductor cross－section			For circuit－breakers Size	DT	Order No．	PS＊	Weight per PU approx．
	Solid or stranded	Finely stranded with end sleeve	AWG cables， solid and stranded					
	mm^{2}	mm^{2}	AWG					kg
3－phase line－side terminals								
	Connection from above							
	2．5．．． 25	$4 \ldots 16$	12－4	S00	－	3RV19 15－5A	1 unit	0.042
				SO	－	3RV19 25－5AB	1 unit	0.041
ПतN 日er	Connection from below ${ }^{1)}$							
3RV19 25－5AB 3RV19 15－5B	2．5．．． 25	4．．． 16	12－4	S00，S0	－	3RV19 15－5B	1 unit	0.110
	Connection from above							
	$2.5 \ldots 50$	1．5 ．． 35	14－0	S2	－	3RV19 35－5A	1 unit	0.115

1）This terminal is connected in place of a switch，please take the spacing into account．

	Version	For circuit－breakers Size	Weight per PU approx．
kg			

SIRIUS Circuit-Breakers up to 100 A
 Accessories

Busbar accessories

Busbar adapters

1) Up to $A C 460 \mathrm{~V}$ with max. short-circuit breaking capacity 25 kA .
2) Cannot be used for voltages < AC 480 V

Short-circuit breaking capacity AC $480 \mathrm{~V} / 500 \mathrm{~V} / 525 \mathrm{~V}$:

- up to $I_{n}=25 \mathrm{~A}: \max .30 \mathrm{kA}$
- up to $I_{n}=90 \mathrm{~A}: \max .16 \mathrm{kA}$
- up to $I_{\mathrm{n}}=100 \mathrm{~A}: \max .6 \mathrm{kA}$

Short-circuit breaking capacity AC 690 V:

- max. 12 kA .

1) Up to $A C 460 V$ with max. short-circuit breaking capacity 25 kA .
2) Cannot be used for voltages < AC 480 V

Short-circuit breaking capacity AC $480 \mathrm{~V} / 500 \mathrm{~V} / 525 \mathrm{~V}$:

- up to $I_{n}=25 \mathrm{~A}: \max .30 \mathrm{kA}$
- up to $I_{n}=90 \mathrm{~A}: \max .16 \mathrm{kA}$
- up to $I_{n}=100 \mathrm{~A}: \max .6 \mathrm{kA}$

Short-circuit breaking capacity AC 690 V :

- max. 12 kA .

For further busbar adapters, accessories, technical specifications and dimension drawings, see Section 6 "Load feeders".

SIRIUS Circuit-Breakers up to 100 A
 Accessories

Rotary operating mechanisms

Overview

Door-coupling rotary operating mechanisms

Circuit-breakers with a rotary operating mechanism can be mounted in a control cabinet and operated externally by means of a door-coupling rotary operating mechanism. When the cir-cuit-breaker cabinet door is closed, the operating mechanism is coupled. When the circuit-breaker closes, the coupling is locked which prevents the door from being opened unintentionally. This lock can be defeated by the maintenance personnel. In the Open position, the rotary operating mechanism can be secured against reclosing with up to 3 padlocks. Inadvertent opening of the door is also not possible here.

3RV19 26-OK door-coupling rotary operating mechanism

3RV19 26-2B door-coupling rotary operating mechanism for harsh environments

Remote motorized operating mechanisms

3RV1 circuit-breakers are manually operated switching devices. They automatically trip in case of an overload or short-circuit. Intentional remote-controlled tripping is possible by means of a shunt release or an undervoltage release. Reclosing is only possible directly at the circuit-breaker.
The motorized remote-controlled operating mechanism allows the circuit-breakers to be opened and closed by electrical commands. This enables a load or an installation to be isolated from the power system or reconnected to it from an operator panel.

If the circuit-breaker is tripped as a result of overload or shortcircuit, it will be in tripped position. For reclosing, the motorized remote-controlled operating mechanism must first be set manually or electrically to the 0 position (electrically by means of the Open command). Then it can be reclosed.
The remote-controlled motorized operating mechanism is available for circuit-breakers of size S2 (I $\left.I_{\text {max }}=50 \mathrm{~A}\right)$ and S3 $\left(I_{\text {max }}=100 \mathrm{~A}\right)$ that are designed for control voltages of AC 230 V and DC 24 V . The circuit-breaker is fitted into the re-mote-controlled motorized operating mechanism as shown in the drawing.

In the "MANUAL" position, the circuit-breaker in the remote-controlled motorized operating mechanism can continue to be switched manually on site. In the "AUTOMATIC" position, the cir-cuit-breaker is switched by means of electrical commands. The switching command must be applied for a minimum of 100 ms . The motorized remote-controlled operating mechanism closes the circuit-breaker after a maximum of 1 second. On voltage failure during the switching operation it is ensured that the circuitbreaker remains in the Open or Closed position.
Reset function
The RESET button on the motorized operating mechanism serves to reset any 3RV19 21-1M alarm switch that might be installed.

Technical specifications

Remote motorized operating mechanisms

- Max. power consumption at $U_{S}=\mathrm{DC} 24 \mathrm{~V}$	W	48
- Max. power consumption at $U_{\mathrm{S}}=\mathrm{AC} 230 \mathrm{~V}$	VA	170
- Operating range		$0.85 \ldots 1.1 \times U_{\mathrm{S}}$
- Min. command duration at U_{S}	S	0.1
- Max. command duration	S	2
unlimited (uninterrupted operation)		
- Max. total break time, remote-controlled	S	2.5
- Ready to reclose after approx.	$1 / \mathrm{h}$	25
- Number of switching operations	A	0.8
- Internal back-up fuse	A	1.6
- AC 230 V		Connector with screw connection
- DC 24 V	$\mathrm{~g} / \mathrm{ms}$	$25 / 11$ (square and sinusoidal pulse)
Connection type of control leads		

Selection and ordering data

Type	Color of knob	Version of extension shaft	For circuit-breakers Size	DT	Order No.	PS*	Weight per PU approx.
		mm					kg

Door-coupling rotary operating mechanisms

The door-coupling rotary operating mechanisms consist of a knob, a coupling driver and an extension shaft of $130 / 330 \mathrm{~mm}$ in length $(5 \times 5 \mathrm{~mm})$. The door-coupling rotary operating mechanisms are designed to the IP65 degree of protection. The door locking device prevents accidental opening of the control cabinet door in the ON position of the circuit-breaker. The OFF position can be locked with up to 3 padlocks.

Door-coupling rotary operating mechanism	Black	$\begin{aligned} & 130 \\ & 330 \end{aligned}$	S0, S2, S3	$>$	3RV19 26-0B 3RV19 26-0K	1 unit 1 unit	$\begin{aligned} & 0.109 \\ & 0.324 \end{aligned}$
EMERGENCY-STOP door-coupling rotary operating mechanism	Red/yellow	$\begin{aligned} & 130 \\ & 330 \end{aligned}$	S0, S2, S3	$\stackrel{\square}{\square}$	3RV19 26-0C 3RV19 26-0L	1 unit 1 unit	$\begin{aligned} & 0.109 \\ & 0.316 \end{aligned}$

Door-coupling rotary operating mechanisms, for arduous conditions

3RV19 26-2C

The door-coupling rotary operating mechanisms consist of a knob, a coupling driver, an extension shaft of 300 mm in length $(8 \times 8 \mathrm{~mm}$), a spacer and two metal brackets, into which the circuit-breaker is inserted. The door-coupling rotary operating mechanisms are designed to the IP65 degree of protection. The door locking device reliably prevents opening of the control cabinet door in the ON position of the circuit-breaker. The OFF position can be locked with up to 3 padlocks. Laterally mountable auxiliary releases and two-pole auxiliary switches can be used. The door-coupling rotary operating mechanism thus meets the requirements for isolating functions to IEC 60947-2.

Door-coupling rotary operating mechanism	Grey	300	$\begin{aligned} & \text { S0 } \\ & \text { S2 } \\ & \text { S3 } \end{aligned}$	-	3RV19 26-2B 3RV19 36-2B 3RV19 46-2B	$\begin{aligned} & 1 \text { unit } \\ & 1 \text { unit } \\ & 1 \text { unit } \end{aligned}$	$\begin{aligned} & 1.180 \\ & 1.570 \\ & 1.720 \end{aligned}$
EMERGENCY-STOP	Red/yellow	300	S0	-	3RV19 26-2C	1 unit	1.180
door-coupling rotary			S2	-	3RV19 36-2C	1 unit	1.480
operating mechanism			S3	-	3RV19 46-2C	1 unit	1.730

Circuit diagrams

Typical circuits
3RV1 circuit-breakers with 3RV19 36/3RV19 46 remote-controlled motorized operating mechanisms

SIRIUS Circuit-Breakers up to 100 A
 Accessories

Mounting accessories

Overview

Soldering terminal

Solder pin adapters are available for the main contacts and transverse auxiliary switches of SOO circuit-breakers.
The prepared terminal parts are clamped to the upper and lower screw terminals of the circuit-breakers which allows them to be soldered into printed circuit boards.
3RV19 18-5A

Terminals for "Self-Protected Combination Motor Controller (Type E)" to UL508

The 3RV10 circuit-breaker for motor protection is approved according to UL508 as "Combination Motor Controller Type E".
As of 16 July 2001, for this application, UL 508 demands increased clearance and creepage distances (1 inch and 2 inches respectively) at the line side of the device.
The 3RV19 28-1H terminal block must be used here for size SO; it is simply screwed onto the basic unit.
Basic units of size S 2 are already compliant with the new clearance and creepage distance requirements.
The 3RT19 46-4GA07 terminal block must be used for size S3. The standard box terminal is to be replaced by this terminal block.
According to CSA, these terminal blocks can be omitted when the device is used as "Self-Protected Combination Motor Controller" (Type E).

3RV19 28-1H

3RT19 46-4GA07

Technical specifications

Type			3RV19 28-1H	3RT19 46-4GA07
Terminals for Colf-Protected Combination Motor Controller (Type E)" to UL508				
Conductor cross-sections - Front clamping point connected	- Solid - Finely stranded with end sleeve - Stranded - AWG cables, solid and stranded - Terminal screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 1 \ldots 10 \\ & 1 \ldots 16 \\ & 2.5 \ldots 25 \\ & 14 \ldots 3 \\ & M 4 \end{aligned}$	See data for 3RV1.4 circuit-breakers
- Rear clamping point connected 	- Solid - Finely stranded with end sleeve - Stranded - AWG cables, solid and stranded - Terminal screw	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \mathrm{~mm}^{2} \\ & \text { AWG } \end{aligned}$	$\begin{aligned} & 1 \ldots 10 \\ & 1 \ldots .16 \\ & 1.5 \ldots 25 \\ & 16 \ldots 3 \\ & M 4 \end{aligned}$	
- Both clamping points connected	- Front clamping point - Solid - Finely stranded with end sleeve - Stranded - AWG cables, solid and stranded - Terminal screw - Rear clamping point - Solid - Finely stranded with end sleeve - Stranded - AWG cables, solid and stranded - Terminal screw	mm^{2} mm^{2} mm^{2} AWG mm^{2} mm^{2} mm^{2} AWG	$\begin{aligned} & 1 \ldots 10 \\ & 1 \ldots .10 \\ & 2.5 \ldots 10 \\ & 14 \ldots 6 \\ & \text { M4 } \\ & \\ & 1 \ldots 10 \\ & 1 \ldots .10 \\ & 15 \ldots 25 \\ & 51 . \ldots 3 \\ & M 4 \end{aligned}$	

SIRIUS Circuit-Breakers up to 100 A
 Accessories
 Mounting accessories

Selection and ordering data

	Version	For circuit-breakers Size	DT	Order No.	PS*	Weight per PU approx.
						kg
Covers						
	Terminal cover for box terminals additional touch protection to be fitted at the box terminals (2 units can be mounted per circuit-breaker)	$\begin{aligned} & \text { S2 } \\ & \text { S3 } \end{aligned}$	$\stackrel{\square}{\square}$	3RT19 36-4EA2 3RT19 46-4EA2	1 unit 1 unit	$\begin{aligned} & 0.020 \\ & 0.017 \end{aligned}$
	Terminal cover for cable lug and bar connection for maintaining the required voltage clearance and as touch protection if box terminal is used (2 units can be mounted per circuit-breaker)	S3	-	3RT19 46-4EA1	1 unit	0.037
	Scale cover sealable, for covering the current setting scale.	S00, S0, S2, S3	-	3RV19 08-0P	10 units	0.060

	Type	Version	For circuit-breakers Size	DT	Order No.	PS*	Weight per PU approx.
							kg
Fixing accessories							
3RB19 00-0B	Push-in lugs	For screwing the circuit-breaker onto mounting plates. For each circuit-breaker, 2 units are required.	S00, S0	-	3RB19 00-0B	10 units	2.000
Soldering terminal							
	For main contacts	For soldering the main conductor cross-sections of a circuit-breaker to a printed circuit board (1 set = 2 parts for 1 circuitbreaker).	S00	B	3RV19 18-5A	4 sets	0.030
3RV19 18-5B with circuit-breaker							
	For main and auxiliary contacts	For soldering the main conductor connections and the auxiliary conductor connections of the transverse auxiliary switch $1 \mathrm{NO}+$ 1NC of a circuit-breaker to a printed circuit board (1 set = 3 parts for 1 circuitbreaker).	S00	B	3RV19 18-5B	4 sets	0.044

Type	Version	For circuit-breakers Size	DT	Order No.	PS*	Weight per PU approx
						kg

Terminals for "Self-Protected Combination Motor Controller (Type E)" to UL508

Note: As of 16 July 2001, UL508 demands for "Combination Motor Controller Type E" 1 -inch clearance and 2-inch creepage distance at line side. The following terminal blocks must be used in 3RV10 circuit-breakers of sizes S0 and S3. The circuitbreaker 3RV10 in size S2 conforms with the required clearance and creepage distances without a terminal block. Terminal blocks are not required for use according to CSA. With size SO, these terminal blocks cannot be used in combination with 3RV19.5 three-phase busbars and with size S3, they cannot be used with a transverse auxiliary switch.

Terminal block type E	For extended clearance and creepage distances (1-inch and 2-inch respectively)	$\begin{aligned} & \text { SO } \\ & \text { S3 } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { 3RV19 28-1H } \\ & \text { 3RT19 46-4GA07 } \end{aligned}$	1 unit 1 unit	$\begin{aligned} & 0.083 \\ & 0.155 \end{aligned}$

Mounting accessories

Overview

Enclosures

For installing circuit-breakers of sizes S00 (I $I_{\text {max }}=12 \mathrm{~A}$) S0 $\left(I_{\text {max }}=25 \mathrm{~A}\right)$ and $S 2\left(I_{\text {max }}=50 \mathrm{~A}\right)$ as a single unit, moldedplastic enclosures for surface mounting and molded-plastic enclosures for flush mounting are available in various dimensions.

The enclosures for surface mounting have the IP55 degree of protection; the enclosures for flush mounting also conform with the IP55 degree of protection at the front (the flush-mounted section complies with IP20).

Enclosure for surface mounting

Enclosure for flush mounting
All enclosures are equipped with N and $\mathrm{PE} /$ /ground terminals. There are two knock-out cable entries for cable glands at the top and two at the bottom; also on the rear corresponding cable entries are scored. There is a knock-out on the top of the enclosure for indicator lamps that are available as accessories.
The narrow enclosure can accommodate a circuit-breaker without accessories, with transverse and lateral auxiliary switch, whereas wide enclosures and enclosures for S2 circuit-breakers also provide space for a laterally mounted auxiliary release. There is no provision for installing a circuit-breaker with an alarm switch.
With SOO circuit-breakers, the switch rocker is operated by means of the actuator diaphragm of the enclosure. A locking device, capable of holding up to three padlocks, can be fitted onto the actuator diaphragm to prevent the circuit-breaker from closing during maintenance work, for example.
A mushroom-shaped EMERGENCY-STOP knob can be fitted in place of the locking device. If it is actuated abruptly, the circuitbreaker opens and the mushroom-shaped knob latches. The knob can be unlatched again either by turning it or by using a special key. The circuit-breaker can subsequently be switched on again.

The molded-plastic enclosures of S0 and S2 circuit-breakers with rotary operating mechanism are fitted with a rotary operating mechanism as well.
The enclosures can be supplied with a black rotary operating mechanism or with an EMERGENCY-STOP rotary operating mechanism with a red/yellow knob.
All rotary operating mechanisms can be locked in the Open position with up to 3 padlocks.

Front plates

Circuit-breakers are frequently required to be actuated in any enclosure. Front plates equipped with an actuating diaphragm for size SOO circuit-breakers, or rotary operating mechanism for S0 to S3 circuit-breakers are available for this purpose.
The front plates for size SOO have a retaining frame into which the circuit-breakers can be snapped. A retaining frame for size SO circuit-breakers is available for front plate sizes SO to $\mathrm{S3}$.

Front plate for size SOO

Accessories for enclosures and front plates

SIRIUS Circuit-Breakers up to 100 A
 Accessories

Enclosures and front plates

Selection and ordering data

	Type	Degree of protection	Integrated terminals	Overall width	For circuitbreakers Size		Order No.	PS*	Weight per PU approx.
									kg
Molded-plastic enclosures for surface mounting									
3RV19 13-1DA00	With actuator diaphragm	IP55	N and PE/ground	```54 mm (for circuit-breaker + lateral auxiliary switch) 72 mm (for circuit-breaker + lateral auxiliary switch + auxiliary release)```	S00	-	3RV19 13-1DA00	1 unit	0.355
	With rotary operating mechanism, lockable in 0 position	IP55	N and PE/ground	$\begin{aligned} & 54 \mathrm{~mm} \\ & \text { (for circuit-breaker + } \\ & \text { lateral auxiliary switch) } \end{aligned}$	S0	\cdots	3RV19 23-1CA00	1 unit	0.332
3RV19 23-1CA00				72 mm (for circuit-breaker + lateral auxiliary switch + auxiliary release)			3RV19 23-1DA00	1 unit	0.399
				82 mm (for circuit-breaker + lateral auxiliary switch + auxiliary release)	S2	A	3RV19 33-1DA00	1 unit	1.130
	With EMERGENCY- STOP rotary operating mechanism, lockable in 0 position	IP55	N and PE/ground	54 mm (for circuit-breaker + lateral auxiliary switch)	SO	AA	3RV19 23-1FA00	1 unit	0.329
				```72 mm (for circuit-breaker + lateral auxiliary switch + auxiliary release)```			3RV19 23-1GA00	1 unit	0.388
				```82 mm (for circuit-breaker + lateral auxiliary switch + auxiliary release)```	S2	A	3RV19 33-1GA00	1 unit	1.130
Cast aluminum enclosures for surface mounting									
	With rotary operating mechanism lockable in 0 position	IP65	$P E^{1)}$	```72 mm (for circuit-breaker + lateral auxiliary switch + auxiliary release)```	SO	A	3RV19 23-1DA01	1 unit	1.010
3RV19 23-1DA01	With EMERGENCYSTOP rotary operating mechanism, lockable in 0 position	IP65	$P E^{1)}$	```72 mm (for circuit-breaker + lateral auxiliary switch + auxiliary release)```	SO	A	3RV19 23-1GA01	1 unit	1.000
Molded-plastic enclosures for flush mounting									
3RV19 13-2DA00	With actuator diaphragm	IP55 (front side)	N and PE/ground	```72 mm (for circuit-breaker + lateral auxiliary switch + auxiliary release)```	S00	A	3RV19 13-2DA00	1 unit	0.416
	With rotary operating mechanism, lockable in 0 position	\|P55 (front side)	N and PE/ground	```72 mm (for circuit-breaker + lateral auxiliary switch + auxiliary release)```	SO	A	3RV19 23-2DA00	1 unit	0.426
3RV19 23-2DA00	With EMERGENCYSTOP rotary operating mechanism, lockable in 0 position	IP55 (front side)	N and PE/ground	```72 mm (for circuit-breaker + lateral auxiliary switch + auxiliary release)```	SO	A	3RV19 23-2GA00	1 unit	0.430

[^3]
SIRIUS Circuit-Breakers up to 100 A

Accessories

Enclosures and front plates

SIRIUS Circuit-Breakers up to 100 A
Accessories
Accessories for circuit-breakers with Cage Clamp connection

Selection and ordering data

SIRIUS Circuit-Breakers up to 100 A
 Accessories

Cage Clamp infeed system

Overview

The Cage Clamp infeed system is a convenient means of power supply and distribution for a group of several circuit-breakers or complete load feeders with a Cage Clamp connection system.
These devices are available in the SIRIUS modular system up to 5.5 kW at AC 400 V . For higher power ratings, circuit-breakers of size S0 with screw connection (up to 11 kW at AC 400 V) can be integrated into the system.

Design

The system is based on a basic module complete with a lateral incoming unit (3-phase busbar with infeed). This incoming unit with Cage Clamp terminals is mounted on the right or left depending on the design and can be supplied with a maximum conductor cross-section of $25 \mathrm{~mm}^{2}$ (with end sleeve). A basic module has two sockets onto each of which a circuit-breaker can
be snapped. Expansion modules are available for extending the system (3-phase busbars for system expansion). The individual modules are connected through an expansion plug.
Electrical connection between the 3-phase busbars and the cir-cuit-breakers is implemented through plug-in connectors. The complete system can be mounted on a 35 mm standard rail to EN 50022 and can be expanded as required up to a maximum current carrying capacity of 63 A.

The system is mounted extremely quickly and easily thanks to the simple plug-in technique. Thanks to the lateral infeed, the system also saves space in the control cabinet. The additional overall height required for the infeed unit is only 30 mm . The alternative infeed possibilities on each side offer a high degree of flexibility for configuring the control cabinet: infeed on left-hand or right-hand side, ring infeed or infeed on one side and loopthrough from the other side to supply further loads are all possible.

(1) 3-phase busbar with infeed
(2) 3-phase busbar for system extension
(3) Extension connector
(4) End cover
(5) Cable connector

6 Contactor base

(1) 3-phase busbars with infeed

A 3-phase busbar with infeed unit is required for connecting the incoming supply. This module comprises one infeed module and 2 sockets which each accept one circuit-breaker. A choice of two designs with infeed on the left or right is available. The incoming supply is connected via Cage Clamp terminals. The Cage Clamp springs permit conductor cross-sections of up to $25 \mathrm{~mm}^{2}$ with end sleeves. An end cover is supplied with each module.

(2) 3-phase busbars for system expansion

The 3-phase busbars for system expansion support expansion of the system. There is a choice of modules with 2 or 3 sockets. The system can be expanded as required up to a maximum current carrying capacity of 63 A . An expansion plug is supplied with each module.

SIRIUS Circuit-Breakers up to 100 A
 Accessories

Cage Clamp infeed system

(3) Expansion plug

The expansion plug is used for electrical connection of adjacent 3-phase busbars. One expansion plug is supplied with each 3-phase busbar for system expansion. Further expansion plugs are therefore only required as spare parts.

(4) End cover

The end cover is used to cover the 3-phase busbar at the open end of the system. This cover is therefore only required once for each system. An end cover is supplied with each 3-phase busbar system with infeed. Further end covers are therefore only required as spare parts.

(5) Plug-in connector

The plug-in connectors are used for the electrical connection between the 3-phase busbar and the circuit-breaker. There are two different designs. One design is for SOO circuit-breakers with Cage Clamp connection and one is for SO circuit-breakers with screw-type connection.

(6) Contactor base

Load feeders can be assembled in the system using the contactor base. The contactor bases are suitable for contactors of size SOO with Cage Clamp connection and are simply snapped onto the 3 -phase busbar. Direct-on-line starters and reversing start-
ers are possible. One contactor base is required for direct-online starters and two are required for reversing starters. To assemble load feeders for reversing starters, the contactor bases can be arranged either below each other (45 mm overall width) or alongside each other (90 mm overall width). It is important to note that mechanical interlocking of the contactors is only possible when they are arranged vertically.
The infeed system is designed for mounting on a 35 mm standard rail with 7.5 mm overall depth. This standard rail gives the contactor base a stable mounting surface to sit on. If standard rails with a depth of 15 mm are used, the spacer connected to the bottom of the contactor base must be knocked out and plugged into the mating piece that is also on the underside. Then the contactor base also has a stable mounting surface. When standard rails with a depth of 7.5 mm are used, the spacer has no function and can be removed.
As an alternative to using a contactor base, for load feeders for direct-on-line starters of size S00, the 3RA19 11-2E electrical link module can also be used. Circuit-breaker and contactor assemblies can then be directly snapped into the sockets of the 3 -phase busbars. For feeders of size SO, the corresponding 3RA19 21-1.... link modules should generally be used. For this size, it is only possible integrate load feeders for direct-on-line starters and they must be integrated in the system as complete assemblies.

Technical specifications

Type		3RV19 . 7
Rated operating voltage U_{e} - IEC - 10\% overvoltage - 5% overvoltage - UL/CSA	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$	$\begin{aligned} & 500 \\ & 525 \\ & 600 \end{aligned}$
Rated frequency	Hz	50/60
Rated current I_{n}	A	63
Permissible ambient temperature - Storage/transport - Operation	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -50 \ldots+80 \\ & -20 \ldots+60^{11} \end{aligned}$
Permissible rated current for 3RV10 11 circuit-breakers (size SOO) at control cabinet internal temperature $\cdot+60^{\circ} \mathrm{C}$	\%	100
Permissible rated current for 3RV1. 21 circuit-breakers (size $\mathbf{S O}$) at control cabinet internal temperature - $+40^{\circ} \mathrm{C}$ - $+60{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \% \\ & \% \end{aligned}$	$\begin{aligned} & 100 \\ & 87 \end{aligned}$
Degree of protection acc. to IEC 60529		IP20 ${ }^{2}$
Touch protection acc. to DIN VDE 0106-100		Finger-safe
Conductor cross-sections for main circuit infeed		
Solid	mm^{2}	4 ... 25
Finely stranded with end sleeve	mm^{2}	$4 \ldots 25$
Finely stranded without end sleeve	mm^{2}	6 ... 25
AWG conductors, solid or stranded	AWG	10 ... 3

1) Above $+40^{\circ} \mathrm{C}$, for $3 R \mathrm{RV} 1.21$ circuit-breaker (size S0)
2) In infeed terminal compartment without a conductor connected: IP00.

Installation guidelines

Clearance in Y direction from live, earthed or insulated parts according to IEC 60947-4.
In addition, the installation guidelines for circuit-breakers or fuseless loadfeeders including the clearances must be complied with.

SIRIUS Circuit-Breakers up to 100 A
 Accessories
 Cage Clamp infeed system

Selection and ordering data

	Type	Version	For circuit-breakers Size		Order No.	PS*	Weight per PU approx.
							kg
3-phase busbars with infeed							
	3-phase busbars with infeed incl. end cover 3RV19 17-6A	For 2 circuit-breakers with infeed from the left	$\begin{aligned} & \text { S00 (Cage Clamp) }{ }^{1)} \text {, } \\ & \text { SO (screw) } \end{aligned}$		3RV19 17-1A	1 unit	0.380
		For 2 circuit-breakers with infeed from the right	$\begin{aligned} & \text { S00 (Cage Clamp) }{ }^{1)} \text {, } \\ & \text { SO (screw) } \end{aligned}$		3RV19 17-1E	1 unit	0.380
V19 17-1A							
3-phase busbars for system expansion							
	3-phase busbars for system expansion incl. 3RV19 17-5BA00 expan- sion connector	For 2 circuit-breakers	$\begin{aligned} & \text { S00 (Cage Clamp)¹), } \\ & \text { S0 (screw) } \end{aligned}$		3RV19 17-4A	1 unit	0.200
		For 3 circuit-breakers	SOO (Cage Clamp) ${ }^{1}$, A S0 (screw)		3RV19 17-4B	1 unit	0.300
3RV19 17-4B							
Plug-in connector							
	Plug-in connector to make contact with the circuitbreakers	Single unit packaging	S00 (Cage Clamp) ${ }^{\text {1) }}$	A	3RV19 17-5AA00	1 unit	0.041
			S0 (screw)	A	3RV19 27-5AA00	1 unit	0.028
		Multi-unit packaging	S00 (Cage Clamp) ${ }^{1)}$	A	3RV19 17-5A	10 units	0.041
			S0 (screw)	A	3RV19 27-5A	10 units	0.028
3RV19 17-5AA00							

1) Compatible with the following circuit-breakers: 3RV10 11-... 2.
(size S00, Cage Clamp) product version E03 and upwards.

	Type	Version	For contactor Size	DT	Order No.	PS*	Weight per PU approx
							kg
Contactor base							
-	Contactor base for mounting direct-on-line or	Single unit packaging	S00 (Cage Clamp)	A	3RV19 17-7AA00	1 unit	0.031
	reversing starters	Multi-unit packaging	S00 (Cage Clamp)	A	3RV19 17-7A	$\begin{array}{r} 10 \\ \text { units } \end{array}$	0.031

SIRIUS Circuit-Breakers up to 100 A Accessories

Cage Clamp infeed system

	Type	Version	DT	Order No.	PS*	Weight per PU approx
						kg
Expansion plugs						
\bar{E}	Expansion plug ${ }^{1)}$ as spare part	Single unit packaging	A	3RV19 17-5BA00	1 unit	0.026
End covers						
	End cover ${ }^{2}$) as spare part	Multi-unit packaging	A	3RV19 17-6A	10 units	0.050
Tools						
	For opening the 3RV19 17-1. Cage Clamp line-side terminal	Length: approx. 175 mm , Blade dimensions: $5.5 \times 0.8 \mathrm{~mm}$		8WA2 806	1 unit	0.063

1) The expansion plug is included in the scope of supply of the 3-phase busbars for system expansion 3RV19 17-4.
2) The end cover is included in the scope of supply of the 3-phase busbars with line-side terminal 3RV19 17-1.

SIRIUS Circuit-Breakers up to 100 A

Circuit-Breakers and Accessories
Project planning aids

Dimension drawings

3RV1 circuit-breaker, size S00
3RV10 11, 3RV16

3RV1 circuit-breaker, size S0

3RV10 21, 3RV13 21, 3RV14 21

3RV1 circuit-breaker, size S2
3RV10 31, 3RV13 31, 3RV14 31

3RV1 circuit-breaker, size S3
3RV10 4, 3RV13 4

1) Lateral auxiliary switch, 2-pole.
2) Alarm switch (SO-S3) or lateral auxiliary switch, 4-pole (S00-S3).
3) Auxiliary release
4) Transverse auxiliary switch
5) Push-in lugs for screw fixing
6) For undervoltage release with leading auxiliary switch only.
7) Drilling diagram
8) 35 mm standard rail acc. to EN 50022
9) Mounting onto 35 mm standard rail, 15 mm high, acc. to EN 50022 or 75 mm standard rail acc. to EN 50023
10) Hexagon socket screw 4 mm
11) Lockable in neutral position With shackle diameter 3.5 mm to 4.5 mm .

Project planning aids

3RV11 circuit-breaker, size S0
3RV11 21

3RV11 circuit-breaker, size S2
3RV11 31

3RV11 circuit-breaker, size S3
3RV11 42

1) Lateral auxiliary switch, 2-pole.
2) Alarm switch or lateral auxiliary switch, 4-pole
3) Block for overload relay function
4) Transverse auxiliary switch
5) Push-in lugs for screw fixing
6) Drilling diagram
7) 35 mm standard rail acc. to

EN 50022
9) Mounting onto 35 mm standard rail, 15 mm high, acc. to EN 50022 or 75 mm standard rail acc. to EN 50023
10) Hexagon socket screw 4 mm
11) Lockable in neutral position with 3.5 mm to 4.5 mm shackle diameter

SIRIUS Circuit-Breakers up to 100 A
 Circuit-Breakers and Accessories

Project planning aids

Disconnector modules

3RV19 28-1A
for circuit-breaker size SO

3RV19 38-1A
for circuit-breaker size S2

Busbars

3RV19 15-1. 3-phase busbars

for circuit-breakers with frame sizes S00 and S0, modular spacing 45 mm for 2 3RV19 15-1AB circuit-breakers
for 3 3RV19 15-1BB circuit-breakers
for 4 3RV19 15-1CB circuit-breakers
for 5 3RV19 15-1DB circuit-breakers

	s00	so
A	111	119
B	67	70

3RV19 15-2. . 3-phase busbars
for circuit-breakers with frame sizes S00 and S0, modular spacing 55 mm
for 2 3RV19 15-2AB circuit-breakers
for 3 3RV19 15-2BB circuit-breakers
for 4 3RV19 15-2CB circuit-breakers
for 5 3RV19 15-2DB circuit-breakers

	S00	S0
A	111	119
B	67	70

SIRIUS Circuit-Breakers up to 100 A

Circuit-Breakers and Accessories

Project planning aids

3RV19 15-3. . 3-phase busbars
for circuit-breakers with frame sizes SOO and SO, modular spacing 63 mm
for 2 3RV19 15-3AB circuit-breakers
for 4 3RV19 15-3CB circuit-breakers

	s00	so
A	111	119
B	67	70

3RV19 35-1. 3-phase busbars
for circuit-breakers with frame size S2, modular spacing 55 mm
for 2 3RV19 35-1A circuit-breakers
for 3 3RV19 35-1B circuit-breakers
for 4 3RV19 35-1C circuit-breakers

3RV19 35-3.. 3-phase busbars

for circuit-breakers with frame size S2, modular spacing 75 mm
for 2 3RV19 35-3A circuit-breakers with accessory
for 3 3RV19 35-3B circuit-breakers with accessory
for 4 3RV19 35-3C circuit-breakers with accessory

3RV19 15-5. 3-phase line-side terminals
3RV19 15-5A
connected from top
size S00

3RV19 15-5B connected from below size SOO and SO

a) 3RV1. 119 mm 3RV1. $2 \quad 23 \mathrm{~mm}$

Connected from top
size S0

SIRIUS Circuit-Breakers up to 100 A
 Circuit-Breakers and Accessories

Project planning aids

3RV19 35-5A 3-phase supply terminals
for circuit-breakers of size S2

3RV19 15-1.. 3-phase busbars for Cage Clamp connection 3RV19 15-1BA, 3RV19 15-1CA

3RV19 15-5DB connecting piece
for connection of the three-phase busbar for circuit-breakers of size S0 (connected on the left)
to frame size SOO (connected on the right)

SIRIUS Circuit-Breakers up to 100 A

Circuit-Breakers and Accessories

Project planning aids

3RV19 26-0. door-coupling rotary operating mechanisms
3RV19 26-0B
3RV19 26-0C
short shaft ${ }^{4}$, for circuit-breakers of sizes S0, S2, S3

3RV19 26-OK
3RV19 26-0L
long shaft (with bracket) ${ }^{3}$, for circuit-breakers of sizes S0, S2, S3

1) Lockable in neutral position with max. 8 mm shackle diameter.
2) Mounted with screw cap.
3) Supplied with a shaft length of 330 mm ; can be adjusted by shortening the shaft.
4) Supplied with a shaft length of 130 mm ; can be adjusted by shortening the shaft.
5) $35 \mathrm{~mm}^{2}$ ground terminal and fixing bracket for 330 mm shaft.

3RV19.6-2. door-coupling rotary operating mechanisms for arduous conditions
3RV19 26-2., 3RV19 36-2., 3R19 46-2.
for sizes S0, S2, and S3

| Type | Size | Dimensions | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | A | B | C | D | E | F | G | H | J | |
| 3RV19 26-2. S0 | 125 | 111 | 50 | 77 | 112 | 50 | 27 | 9 | 42 | |
| 3RV19 36-2. S2 | 170 | 144 | 60 | 87 | 162 | 50 | 27 | 10 | 47 | |
| 3RV19 46-2. S3 | 194 | 180 | 60 | 100 | 187 | 48 | 25 | 10 | 53 | |

SIRIUS Circuit-Breakers up to 100 A

Circuit-Breakers and Accessories
Project planning aids
Remote motorized operating mechanisms
3RV19. 6-3APO
for frame sizes S2 and S3

3RV19 18-5. solder pin adapter
3RV19 18-5A
3RV19 18-5B

Terminals for "Self-Protected Combination Motor Controller (Type E)" to UL508

3RV19 28-1H

3RT19 46-4GA07

SIRIUS Circuit-Breakers up to 100 A

Circuit-Breakers and Accessories

Project planning aids

3RV19.3-1.... molded-plastic surface-mounted enclosure
For circuit-breaker size S00 3RV19 13-1.

a) 3RV19 13-1CA00 85 mm
b) With 3RV19 13-7D: 154 mm with 3RV19 13-7E: 174 mm Dimensions refer to mounting surface.
c) With 3RV19 13-7D: 64 mm with 3RV19 13-7E: 84 mm
d) Dimensions refer to mounting surface.
3) Knock-outs for M25
4) Knock-outs for rear main conductor connection M20.
5) With safety lock.
6) Max. shackle diameter for padlock 8 mm .
7) 3RV19 03-5 indicator light.
8) 3RV19 13-6B locking device
9) 3RV19 13-7 EMERGENCY-STOP mushroom button.

For circuit-breakers size SO
3RV19 23-1...

a) 3RV19 23-1CA00 85 mm 3RV19 23-1DA00 105 mm

1) Knock-outs for M25.
2) Knock-outs for rear main conductor connection M20.
3) Opening for padlock with shackle diameter of 6 mm to 8 mm .
4) 3RV19 03-5 indicator light.

For circuit-breakers size S2
3RV19 33-1. .

1) Knock-outs for M32 (left) and M40 (right).
2) Knock-outs for rear main conductor connection M32.
3) Opening for padlock with shackle diameter of 6 mm to 8 mm .
4) 3RV19 03-5 indicator light.

SIRIUS Circuit-Breakers up to 100 A

Circuit-Breakers and Accessories
Project planning aids
3RV19 23-1. . . . cast aluminum surface-mounted enclosure
For circuit-breakers of size SO
3RV19 23-1DA01
3RV19 23-1G

1) 3 RV19 $03-5$ indicator light.
2) Knock-outs for M25 cable glands
3) Opening for padlock with shackle diameter of 6 mm to 8 mm .

3RV19.3-2.... molded-plastic surface-mounted enclosure

For circuit-breakers of size SOO 3RV19 13-2DA00

1) $3 R$ RV19 03-5 indicator light.
2) Knock-outs for M25.
3) Knock-outs for M20.
4) Opening for padlock with shackle diameter of 6 mm to 8 mm .

3RV19 13-4C molded-plastic front plate

For circuit-breakers of size SOO
3RV19 13-4C

For circuit-breakers of size SO
3RV19 23-2DA00 3RV19 23-2GA00

3RV19 23-4. molded-plastic front plate

For circuit-breakers of size S0, S2, S3
3RV19 23-4B
3RV19 23-4E
3RV19 23-4G (for size SO only)

1) 3RV19 03-5 indicator light.
2) Opening for padlock with shackle diameter of 6 mm to 8 mm .

SIRIUS Circuit-Breakers up to 100 A

Circuit-Breakers and Accessories

Project planning aids
Cage Clamp infeed system
3-phase busbars with line-side terminals
for 2 circuit-breakers of sizes SOO and SO
3RV19 17-1.

	SOO	SO
a	104	125

3-phase busbars for system expansion
for 2 and 3 circuit-breakers of sizes SOO and SO
3RV19 17-4.

Circuit-Breakers up to 500 A Compact (MCCB) SENTRON VL

General data

Area of application

The compact design of the SENTRON VL circuit-breakers with excellent characteristics fulfils the high demands of today's electrical distribution systems.
These circuit-breakers offer a broad product range, improved technology, space savings and simple operation.

They are available both in thermal/magnetic design (16 A to 630 A) and in solid-state design (63 A to 1600 A).
Catalog LV 10 lists circuit-breakers for motor protection and for starter combinations with magnetic and solid-state overcurrent releases and rated currents from 63 A to 500 A.
For further SENTRON VL circuit-breakers, see Catalog LV 30.
The different designs of SENTRON VL circuit-breakers are suitable for the following applications:

- Incoming and outgoing circuit-breakers in distribution systems
- Switching and protection devices for motors, transformers and capacitors
- Main control switches and EMERGENCY-STOP switches in conjunction with lockable rotary operating mechanisms and terminal covers.

Design

Overview

- Rated current range from 16 A to 1600 A
- Different switching capacities for each size

N Standard (40 to 50 kA/AC 415 V)
H High (70 kA/AC 415 V)
L Very high (100 kA/AC 415 V)

- No derating or loss of performance up to $50^{\circ} \mathrm{C}$
- Electronic overcurrent releases from size 160 A (VL160), particularly for time-based discrimination and ground-fault protection
- Only two ranges of internal accessories
- Full range of external accessories e.g. terminals for aluminim cables.

Functions

For motor protection

(in 3-pole design)
The overload and short-circuit releases are designed for optimized protection and direct starting of three-phase squirrel-cage motors. The circuit-breakers for motor protection are susceptible to phase failure and feature an adjustable trip class. The overcurrent releases operate with a microprocessor.

For starter combinations

(in 3-pole design)
These circuit-breakers are used both for short-circuit protection as well as for isolating functions, which may be required in starter combinations consisting of circuit-breakers, overload relays and motor contactors. These circuit-breakers exclusively feature adjustable, instantaneous short-circuit releases.

Current limitation

The SENTRON VL circuit-breakers utilize the design principle of magnetic repulsion of the contacts. The contacts open before the anticipated peak value of the short-circuit current is achieved. The current-limiting effects of the SENTRON VL cir-cuit-breakers provide effective protection for system components against the thermal and dynamic effects of the short-circuit current in the event of an electrical fault.

Electronic overcurrent releases ETU

Application: Motor protection - ETU10M, LI function

Overload protection, finely adjustable $I_{R}=0.41$;
0.42 to 0.98; 0.99; $1 \times I_{\mathrm{n}}$, time-lag class $t_{\mathrm{R}}=10$ (fixed)

Thermal image
Short-circuit protection (instantaneous) $I_{\mathrm{i}}=1.25$ to $11 \times I_{\mathrm{n}}$ with phase-failure sensitivity

Application: Motor protection - ETU3OM, LI function

Overload protection, finely adjustable $I_{R}=0.41$; 0.42 to 0.98; 0.99; $1 \times I_{\mathrm{n}}$,

Trip class $T_{C}=10 \mathrm{~A}, 10,20,30$
Thermal image
Short-circuit protection (instantaneous)
$I_{\mathrm{i}}=6,8,11 \times I_{\mathrm{n}}$
with phase-failure sensitivity

Electronic overcurrent releases LCD ETU

General

- Indication of the current values on the LCD
- User-friendly, menu-driven setting of protection parameters in absolute ampere values via keys
- Integrated self-test function
- Female connector for test/programming device
- For communication link to PROFIBUS DP see Catalog LV 30, Part 3.

Motor/generator protection - ETU40M, LSI function

Overload protection $I_{\mathrm{R}}=0.4$ to $1 \times I_{\mathrm{n}}$, trip class $T_{\mathrm{C}}=2.5$ to 30
On/off selectable thermal image
Short-circuit protection (short-time delayed)
$I_{\text {Sd }}=1.5$ to $10 \times I_{\mathrm{R}}, t_{\mathrm{sd}}=0$ to $0.5 \mathrm{~s}, I^{2} t$ selectable on/off Short-circuit protection (instantaneous) $I_{\mathrm{i}}=1.25$ to $11 \times I_{\mathrm{n}}$

Circuit-Breakers up to 500 A
 Compact (MCCB) SENTRON VL

For motor/generator protection ETU

Selection and ordering data

3-pole fixed-mounted circuit-breakers, VL160 to VL630, solid-state overload releases												
Type	Rated current I_{n}	Setting current of inversetime delayed overload releases "L" I_{R}	Operating current of instantaneous shortcircuit release "I" I_{i}		Standard switching capacity N 40/45/50 kA at AC 380/415 V Order No. Order No. supplement	Weight per PU approx.	DT	High switching capacity H 70 kA at AC 380/415 V Order No. Order No. supplement	Weight per PU approx	DT	Very high switching capacity L 100 kA at AC 380/415 V Order No. Order No. supplement	Weight per PU approx.
	A	A	$X I_{n}$		see page 4/61.	kg		see page 4/61.	kg		4/61.	
		Circuit-breakers for motor/generator protection, ETU10M, LI function with permanently fixed trip class $T_{\mathrm{C}}=10$, with phase-failure $\overline{\text { sensitivity }}$										
VL160	63	25... 63	1.25... 11	B	3VL27 06-1AP33-....	2.400	B	3VL27 06-2AP33-....	2.400	B	3VL27 06-3AP33-....	2.400
	100	40... 100	1.25... 11	B	3VL27 10-1 AP33-....	2.400	B	3VL27 10-2AP33-....	2.400	B	3VL27 10-3AP33-....	2.400
	160	64... 160	1.25... 11	B	3VL27 16-1 AP33-....	2.400	B	3VL27 16-2AP33-....	2.400	B	3VL27 16-3AP33-....	2.400
VL250	200	80... 200	1.25... 11	B	3VL37 20-1AP36-....	2.500	B	3VL37 20-2AP36-....	2.500	B	3VL37 20-3AP36-....	2.500
	250	100... 250	1.25... 11	B	3VL37 25-1AP36-....	2.500	B	3VL37 25-2AP36-....	2.500	B	3VL37 25-3AP36-....	2.500
VL400	315	125... 315	1.25... 11	B	3VL47 31-1AP36-....	5.900	B	3VL47 31-2AP36-....	5.900	B	3VL47 31-3AP36-....	5.900
	400	160... 400	1.25... 11	B	3VL47 40-1AP36-....	5.900	B	3VL47 40-2AP36-....	5.900	B	3VL47 40-3AP36-....	5.900
VL630	500	200... 500	1.25...12.5	B	3VL57 50-1AP36-....	9.300	B	3VL57 50-2AP36-....	9.300	B	3VL57 50-3AP36-....	9.300
Circuit-breakers for with adjustable trip clas with phase-failure sen												
VL160	63	25... 63	1.25... 11	B	3VL27 06-1AS33-....	2.400	B	3VL27 06-2AS33-....	2.400	B	3VL27 06-3AS33-....	2.400
	100	40... 100	1.25... 11	B	3VL27 10-1AS33-....	2.400	B	3VL27 10-2AS33-....	2.400	B	3VL27 10-3AS33-....	2.400
	160	64... 160	1.25... 11	B	3VL27 16-1AS33-....	2.400	B	3VL27 16-2AS33-....	2.400	B	3VL27 16-3AS33-....	2.400
VL250	200	80... 200	1.25... 11	B	3VL37 20-1AS36-....	2.500	B	3VL37 20-2AS36-....	2.500	B	3VL37 20-3AS36-....	2.500
	250	100... 250	1.25... 11	B	3VL37 25-1AS36-....	2.500	B	3VL37 25-2AS36-....	2.500	B	3VL37 25-3AS36-....	2.500
VL400	315	125... 315	1.25... 11	B	3VL47 31-1AS36-....	5.900	B	3VL47 31-2AS36-....	5.900	B	3VL47 31-3AS36-....	5.900
	400	160... 400	1.25... 11	B	3VL47 40-1AS36-....	5.900	B	3VL47 40-2AS36-....	5.900	B	3VL47 40-3AS36-....	5.900
VL630	500	200... 500	1.25...12.5	B	3VL57 50-1AS36-....	9.300	B	3VL57 50-2AS36-....	9.300	B	3VL57 50-3AS36-....	9.300
NSEO_00706												
VL160	63	25... 63	1.25... 11	B	3VL27 06-1CP33-....	2.400	B	3VL27 06-2CP33-....	2.400	B	3VL27 06-3CP33-...	2.400
	100	40... 100	1.25... 11	B	3VL27 10-1CP33-....	2.400	B	3VL27 10-2CP33-....	2.400	B	3VL27 10-3CP33-....	2.400
	160	63... 160	1.25... 11	B	3VL27 16-1CP33-....	2.400	B	3VL27 16-2CP33-....	2.400	B	3VL27 16-3CP33-....	2.400
VL250	200	80... 200	1.25... 11	B	3VL37 20-1CP36-....	2.500	B	3VL37 20-2CP36-....	2.500	B	3VL37 20-3CP36-....	2.500
	250	100... 250	1.25... 11	B	3VL37 25-1CP36-....	2.500	B	3VL37 25-2CP36-....	2.500	B	3VL37 25-3CP36-....	2.500
VL400	315	125... 315	1.25... 11	B	3VL47 31-1CP36-....	5.900	B	3VL47 31-2CP36-....	5.900	B	3VL47 31-3CP36-....	5.900
	400	160... 400	1.25... 11	B	3VL47 40-1CP36-....	5.900	B	3VL47 40-2CP36-....	5.900	B	3VL47 40-3CP36-....	5.900
VL630	500	200... 500	1.25...12.5	B	3VL57 50-1CP36-....	9.300	B	3VL57 50-2CP36-....	9.300	B	3VL57 50-3CP36-....	9.300

Package size for SENTRON VL circuit-breakers is 1 unit, i.e. 1 unit or a multiple thereof can be ordered.
For the complete range of SENTRON VL circuit-breakers
see Catalog LV 30 "Products and Systems for Power Distribution"

3-pole fixed-mounted circuit-breakers, VL160 to VL630 Magnetic overcurrent releases												
Type	Rated current I_{n}	Setting current of inversetime delayed overload release "L" $I_{\text {R }}$	Operating current of instantaneous shortcircuit release "I" I_{i}	DT	Standard switching capacity N 40/45/50 kA at AC 380/415 V Order No.	Weight per PU approx.	DT	High switching capacity H 70 kA at AC 380/415 V	Weight per PU approx.	DT	Very high switching capacity L 100 kA at AC 380/415 V Order No.	Weight per PU approx.
	A	A	A		Order No. supplement required, see below.	kg		Order No. supplement required, see below.	kg		Order No. supplement required, see below.	kg

3VL27 06-1DK33-....	2.200	B
3VL27 06-2DK33-....		
3VL27 10-1DK33-....	2.200	B
3VL27 16-1DK33-....	3VL27 10-2DK33-....	
3VL37 25-1DK36-....	2.300	B
3VL27 16-2DK33-....	3VL37 25-2DK36-....	
3VL47 20-1DK36-....	5.700	B
3VL47 20-2DK36-....		
3VL47 25-1DK36-...	5.700	B
3VL47 25-2DK36-....		
3VL47 40-1DK36-....	5.700	B
3VL47 40-2DK36-....		
3VL57 50-1DK36-....	9.000	B

| 2.200 | B | 3VL27 06-3DK33-.... | 2.200 |
| :--- | :--- | :--- | :--- | :--- |
| 2.200 | B | 3VL27 10-3DK33-.... | 2.200 |
| 2.200 | B | 3VL27 16-3DK33-.... | 2.200 |
| 2.300 | B | 3VL37 25-3DK36-.... | 2.300 |
| 5.700 | B | 3VL47 20-3DK36-.... | 5.700 |
| 5.700 | B | 3VL47 25-3DK36-.... | 5.700 |
| 5.700 | B | 3VL47 40-3DK36-.... | 5.700 |
| 9.000 | B | 3VL57 31-3DK36-.... | 9.000 |
| 9.000 | B | 3VL57 50-3DK36-.... | 9.000 |

Package size for SENTRON VL circuit-breakers is 1 unit, i.e. 1 unit or a multiple thereof can be ordered.
For the complete range of SENTRON VL circuit-breakers
see Catalog LV 30 "Products and Systems for Power Distribution".

Order No. supplements

1. Order No. supplement:
Undervoltage or shunt release,
directly wired to accessories

Rated control supply voltage $U_{S} /$ frequency		Order No. supplement	Complement	Order No. supplement	Circuit-b Type		
DC		3VL.	HS = contact block 1 NO or 1 NC AS = contact block 1 NO	$3 \mathrm{VL} .$	$\begin{aligned} & \text { VL160/ } \\ & \text { VL250 } \end{aligned}$	VL400	VL630
Without auxiliary release		0 A	Without auxiliary switch/alarm switch	A 0	\times	x	x
With undervoltage release		Right pole only	With auxiliary switch/alarm switch				
AC V	DC V		2 HS (1 NO/1 NC)	B 1	x^{2})	x	-
-	24	$2 \mathrm{P}^{1}$)	$4 \mathrm{HS}(2 \mathrm{NO} / 2 \mathrm{NC})$	C 1	-	-	x
110-127	-	$2 \mathrm{G}^{1}$)	1 AS (1 NO)	G 1	x^{2})	x	-
-	110-127	$2 \mathrm{R}^{1}$)	$2 \mathrm{HS}(1 \mathrm{NO} / 1 \mathrm{NC})+1 \mathrm{AS}(1 \mathrm{NO})$	D 1	x^{2})	x	-
220-250	-	$2 \mathrm{H}^{1}$)	$2 \mathrm{HS}(1 \mathrm{NO} / 1 \mathrm{NC})+1 \mathrm{AS}(1 \mathrm{NO})$	E 1	-	-	x
-	220-250	$2 \mathrm{~S}^{1}$)					

With shunt release

AC V	DC V	
-	24	$8 \mathrm{C}^{1}$)
110-127	-	$8 \mathrm{R}^{1}$)
-	110-127	$8 \mathrm{~K}^{1}$)
208-277	-	$8 \mathrm{~T}^{1}$)
-	220-250	$8 Q^{1}$)

Right pole only
$x=$ available

- = not available

1) For VL160/VL250 circuit-breakers with solid-state tripping units, only one undervoltage release or shunt release or one auxiliary/alarm switch combination is possible.
2) Excluding installation in the left accessory compartment of the SENTRON VL 160X circuit-breaker with RCD module and
SENTRON VL160 and VL250 circuit-breakers with solid-state release units, because this compartment contains the tripping solenoid. On the right, only one auxiliary release or one auxiliary/alarm switch combination can be installed. A 3SB adapter can be installed in the N pole (4-pole circuitbreaker only) for this application only.

Circuit-Breakers up to 500 A
 Compact (MCCB) SENTRON VL

Accessories/Spare parts
Selection and ordering data

	For VL160 to VL250			DT	For VL400				For VL630		
DT	Order No.	PS*	Weight per PU approx		Order No.	PS*	Weight per PU approx.	DT	Order No.	PS*	Weight per PU approx
		kg					kg				kg
Front-operated rotary operating mechanism ${ }^{1)}$ for direct mounting on the circuit-breaker, without a early-make auxiliary switch, IP30 degree of protection ${ }^{2}$, black, max. 3 padlocks											
B	3VL9 300-3HA00	1 unit	0.618	B	3VL9 400-3HA00	1 unit	0.618	B	3VL9 600-3HA00	1 unit	1.370
EMERGENCY-STOP design, red knob, y	yellow indicator plate										
B	3VL9 300-3HC00	1 unit	0.618	B	3VL9 400-3HC00	1 unit	0.618	B	3VL9 600-3HC00	1 unit	1.360

IP65 degree of protection, incl. black knob with masking frame, indicator plate, removable door coupling, 300 mm extension shaft and front-operated rotary operating mechanism for the respective circuit-breaker, lockable with up to 3 padlocks, with door interlocking

B 3VL9 300-3HF04 1 unit 0.965 B 3VL9 400-3HF04 1 unit 0.965 B $\mathbf{3 V L 9}$ 600-3HF04 1 unit 2.465 EMERGENCY-STOP design, red knob, yellow indicator plate, without leading auxiliary switch

$$
\text { B 3VL9 300-3HG04 } 1 \text { unit 0.980 B } 3 \text { 3VL9 400-3HG04 } 1 \text { unit } 1.100 \text { B } \quad \text { 3VL9 600-3HG04 } \quad 1 \text { unit } 2.460
$$

Auxiliary switches (HS) and alarm switches (AS) for retrofitting

Assembly kits	Mounting side												
$\begin{aligned} & 2 \mathrm{HS} \\ & (1 \mathrm{NO}+1 \mathrm{NC}) \\ & \hline \end{aligned}$	N, left ${ }^{3}$, right	B	3VL9 400-2AB00	1 unit	0.073	B	3VL9 400-2AB00	1 unit	0.073		-		
$\begin{aligned} & \hline 4 \mathrm{HS} \\ & (2 \mathrm{NO}+2 \mathrm{NC}) \\ & \hline \end{aligned}$	N , left, right		-				-			B	3VL9 800-2AC00	1 unit	0.094
Undervoltage release for retrofitting													
AC 220-250 V	Right pole only	B	3VL9 400-1UH00	1 unit	0.121	B	3VL9 400-1UH00	1 unit	0.121	B	3VL9 800-1UH00	1 unit	0.132
Shunt release ${ }^{4)}$ for retrofitting													
AC 208-277 V	Right pole only	B	3VL9 400-1ST00	1 unit	0.140	B	3VL9 400-1ST00	1 unit	0.140	B	3VL9 800-1ST00	1 unit	0.183

Motorized operating

mechanism ${ }^{5}$
IP30 degree of protection, with
locking device for 3 padlocks

AC 50/60 Hz V	DC V
$220-250$	$220-250$

B 3VL9 300-3MQ00

1) Not possible on VL160X with RCD module.
2) IP40 with additional masking frame mounted on door cut-out.
3) Excluding installation in the left accessory compartment of the SENTRON VL160X circuit-breaker with RCD module and
SENTRON VL160 and VL250 circuit-breakers with solid-state overload
releases, because this compartment contains the tripping solenoid.
A 3 SB adapter can be installed in the N pole
(4-pole circuit-breaker only) for this application only.
4) For VL160X to VL400:

Shunt release with disconnection contact (3SB3 for ON/OFF position) not floating.
5) For VL 400 :

Not suitable for mounting in the right-hand compartment. The installation
kit 3VL9 400-2AB00 with auxiliary switches only is recommended.

Further information

Manual for the SENTRON VL circuit-breakers

This manual contains additional technical information, covering a product description, mode of operation, electrical wiring system and retrofitting. The manual and the operating instructions can be found in PDF format at:
www.siemens.de/energieverteilung

[^0]: This catalog contains the SENTRON VL circuit-breakers up to 500 A for motor protection and for starter combinations.

[^1]: For technical specifications, see "Mountable accessories"

[^2]: 1) Recommended values for standard 4-pole motors at AC 50 Hz 400 V . The actual start-up data and ratings for the motor to be protected are relevant.
 2) For overload protection of the motors, appropriate overload relays must be
[^3]: 1) If required, an additional N terminal can be mounted
 (e.g. 8WA10 11-1BG11).
