CALOMAT 6 Thermal Conductivity Gas Analyzer

2 2 3 4 5	Application Design Mode of operation, spans, interferences Executions of the wetted parts Communication
8 8 9 11 12 13	19" unit Connections, assembly Electrical connection Technical data Dimensions Ordering data
15 15 16 18 19 20	Field unit Connections, assembly Electrical connection Technical data Dimensions Ordering data
22 24 27	Explosion-proof design BARTEC EEx p control unit Ex purging unit MiniPurge FM
28	Spare parts
29	Documentation
32	Conditions of sale and delivery Export regulations
32	Contact addresses

General

Application

The **CALOMAT 6** gas analyzer is primarily used for quantitative determination of **H₂** or **He** in binary or quasi-binary gas mixtures.

Concentrations of other gases can also be measured if their thermal conductivities differ significantly from the residual gases.

The measuring principle is based on the different thermal conductivity of gases. The **CALOMAT 6** operates with a micro-mechanically manufactured Si sensor which is particularly characterized by a short T_{90} time.

Special applications

Besides the standard combinations, special applications concerning the measuring components and residual gases are available on request.

Application examples

- Pure gas monitoring (0...1 % H₂ in Ar)
- Inert gas monitoring (0...2 % H₂ in N₂)
- Hydroargon gas monitoring (0...25 % H₂ in Ar)
- Forming gas monitoring (0...25 % H₂ in N₂)
- Gas production:
- 0...2 % He in N₂
- 0...10 % Ar in O_2
- Chemical applications:
 - 0...2 % H₂ in NH₃
- 50...70 % H₂ in N₂
- Wood gasification (0...30 % H₂ in CO/CO₂/CH₄)
- Blast furnace gas (0...5 % H₂ in CO/CO₂/CH₄/N₂)
- Bessemer converter gas (0...20 % H₂ in CO/CO₂)
- Monitoring equipment for hydrogen-cooled turbo-alternators:
- 0...100 % CO₂/Ar in air
- 0...100 % H₂ in CO₂/Ar
- 80...100 % H₂ in air
- Version to analyze flammable and non-flammable gases or vapors for use in hazardous areas (zone 1 and zone 2). (Use in hazardous areas of zone 0 is not possible.)

Essential characteristics

- Four freely-progammable measuring ranges, also with zero offset, all measuring ranges linear
- Smallest spans up to 1% H₂ (with suppressed zero: 95 to 100 % H₂) possible
- Electrically isolated analog output 0/2/4 to 20 mA
- Autoranging or manual range switching possible; remote switching is also possible

- Measuring point selection for up to 6 measuring points (can be parameterized)
- Measuring range identification
- Measuring point identification
- Storage of measured values possible during calibration
- Time constants selectable within wide limits (static/dynamic noise suppression); i.e. the response time of the analyzer can be matched to the respective application
- Simple handling using menu-based operation (interactive mode) according to NAMUR Recommendation
- Short response time
- Low long-term drift
- Two operation levels with separate access code to prevent unintentional and unauthorized inputs
- External pressure sensor for correction of pressure variations in sample gas
- Automatic range calibration can be parameterized
- Customer-specific analyzer options such as e.g.:
- Customer acceptance
- Tag labels
- Drift recording

Essential charac6teristics of the 19" unit

- 19" unit with 4 HU for installation
- in swing frame
- in cabinets, with or without slide rails
- Front panel for service can be hinged down (e.g. for laptop connection)
- Internal gas paths: pipe made of stainless steel
- Gas connections for sample gas input and output: pipe diameter 6 mm or 1/4"

Essential characteristics of the field unit

- Two-door housing with gas-tight separation of analyzer and electronics sections
- Sections can be purged separately
- Gas path and pipe couplings made of stainless steel (type No. 1.4571)
- Gas connections: coupling for pipe diameter 6 mm or 1/4"
- Purging gas connections: pipe diameter 10 mm or 3/8"
- Simple analyzer exchange since electric connections are easy to remove

Desian

Display and control panel

- Large LCD panel for simultaneous display of:
- Measured value (digital and analog displays)
- Status line
- Measuring ranges
- Contrast of LCD panel adjustable using menu
- Permanent LED backlighting
- Five-digit measured-value display (decimal point counts as a digit)
- Washable membrane keyboard/front panel
- Menu-based operation for configuration, test functions and calibration
- User help in plain text
- Graphic display of concentration trend; programmable time intervals
- Operating software in two languages: German/English, English/Spanish, French/English, Spanish/English, Italian/English.

Inputs and outputs

- One analog output
- Two analog inputs programmable, e.g. for correction of cross interferences or external pressure sensor
- Six binary inputs freely configurable, e.g. for range switching
- Six relay outputs freely configurable, e.g. for failure, maintenance request, limit alarm, external solenoid valves
- Extension with eight additional binary inputs and eight additional relay outputs for automatic calibration with up to four calibration gases

Communication

 RS 485 present in basic unit (connection at the rear, with 19" unit also possibility of connection behind the front plate)

Options

- Converter to RS 232
- Converter to TCP/IP Ethernet
- Linking to networks via PROFIBUS-DP/-PA interface
- SIPROM GA software as service and maintenance tool

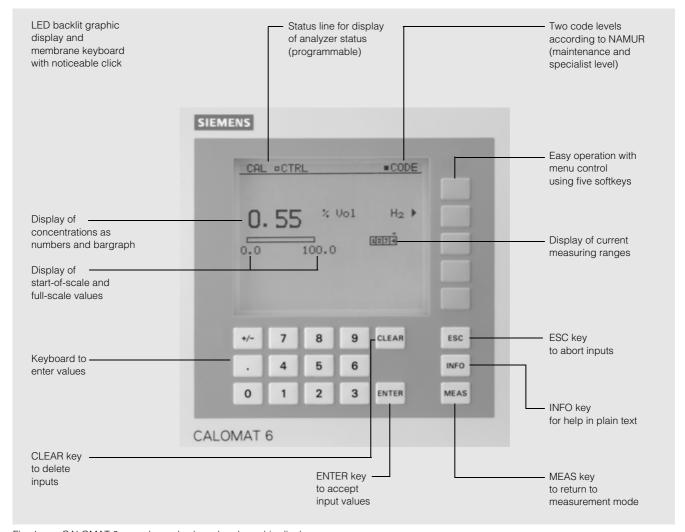


Fig. 1 CALOMAT 6, membrane keyboard and graphic display

General

Mode of operation, spans, interferences

Mode of operation

The measuring principle is based on the different thermal conductivity of gases.

The CALOMAT 6 sensor is a micromechanical-made Si chip with a measuring membrane and thin-film resistors.

The resistors are adjusted on a constant temperature. This requires an current intensity depending on the sample gas thermal conductivity. Further this "coarse value" is electronically processed and used to calculate the gas concentration.

The sensor is located in a thermostatically-controlled stainless steel enclosure in order to prevent influences of ambient temperature changes.

To prevent the influences by the sample gas changes, the sensor is not placed in the main flow.

Note

The sample gases have to enter the analyzer dustfree. Avoid condensate in the sample cells. That is why the most measuring tasks require an appropriate gas preparation.

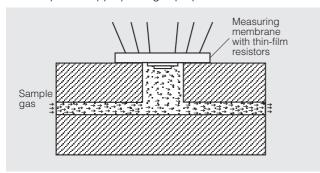


Fig. 2 CALOMAT 6, mode of operation

Spans

The smallest and largest spans which are possible depend on the measured component (type of gas) as well as the respective application.

The smallest possible spans listed below refer to N_2 as the residual gas. With other gases which have a larger/smaller thermal conductivity than N_2 , the smallest possible span is also larger/smaller.

	Smallest possible span			
H ₂	01 % (95100 %)			
He	02 %			
Ar	010 %			
CO ₂	020 %			
CH ₄	015 %			
H ₂ in blast furnace gas	010 %			
H ₂ in Bessemer converter gas	020 %			
H ₂ with wood gasification	030 %			

Influence of interfering gases

Knowledge of the sample gas composition is necessary to determine the influence of residual gases with several interfering components.

The following table lists the zero offsets expressed in $\%~H_2$ resulting from 10 % residual gas (interfering gas) in each case.

Component	Zero offset
Ar	-1.28 %
CH ₄	+1.59 %
C ₂ H ₆ (non-linear response)	-0.06 %
C ₃ H ₈	-0.80 %
CO	-0.11 %
CO ₂	-1.07 %
He	+6.51 %
N ₂ O	+1.08 %
NH ₃ (non-linear response)	+0.71 %
02	-0.18 %
SF ₆	-2.47 %
SO ₂	-1.34 %
Air (dry)	+0.25 %

For residual gas concentrations differing from 10 %, the correspondant multiple of the table value gives an acceptable approximation. This is valid for for residual gas concentrations up to 25 % (dependent on gas type).

The thermal conductivity of most gas mixtures has a non-linear response. Even ambiguous results, such as e.g. with NH_3/N_2 mixtures, can occur within a specific concentration range.

In addition to a zero offset, it should also be noted that the gradient of the characteristic is influenced by the residual gas. However, this effect is negligible for most gases.

In case of correction of the influence of interfering gases with additional analyzers (ULTRAMAT 6/ULTRAMAT 23), the resulting measuring error can – depending on the application – amount up to 5 % of the smallest measuring range of the application.

Executions of the wetted parts

Gas path		19" unit	Field unit	Field unit Ex		
with pipes	Nipple	SS, type No. 1.4571				
	Pipe	SS, type No. 1.4571				
	Sample cell body	SS, type No. 1.4571				
	O-rings	FFKM - Chemraz				
	Sensor	Si, SiO _x N _y , AU, epoxy resin, glass				
	Tightness	leakage < 1 μl/s				

Communication

Communications facilities

The gas analyzers of series 6, ULTRAMAT 6, ULTRAMAT/OXYMAT 6, OXYMAT 6, OXYMAT 61 and CALOMAT 6, as well as the ULTRAMAT 23 offer the following communications facilities:

- Serial RS 485 interface present as standard with internal communications bus (ELAN) which permits communication between the analyzers and with multi-channel analyzers from one channel to the other via the serial interface even without a PC for e.g. information on the process gas pressure and compensation of the influences of interfering gases.
- SIPROM GA, a software tool especially for servicing and maintenance tasks. All functions of the analyzers, whether an individual device or where several are networked together, can be remote controlled and monitored using SIPROM GA.
- PROFIBUS-DP/-PA is the leading field bus on the market. All Siemens gas analyzers are suitable for PROFIBUS when equipped with an optional plug-in card (retrofitting also possible) and satisfy the binding "Device profile for analyzers" defined by the PNO (PROFIBUS user organization). Central access to the analyzers in the system is possible using the SIMATIC PDM operator input software.

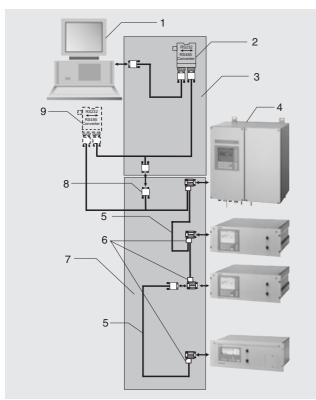


Fig. 3 Typical design of an RS 485 network

Item	Designation
1	Computer
2	RS 485/RS 232 converter with RS 232/RS 485 cable
3	RS 485 bus connector with jumper
4	Analyzers
5	RS 485 cable
6	RS 485 bus connector
7	RS 485 network
8	9-pin DSUB plug
9	Option: RS 485 repeater

Interface parameters

Level	RS 485
Baud rate	9600
Data bits	8
Stop bit	1
Start bit	1
Parity	None
No echo mode	

Ordering information

Interface description (German)
RS 485/RS 232 converter
RS 485/Ethernet converter
SIMATIC cable/bus cable
SIMATIC bus connector
9-pin DSUB plug
Repeater

Repeater (see also Catalog CA 01 or IK PI)

Order No.

A5E000 54148 C79451-Z1589-U1 C79451-A3364-D61 6XV1 830-0EH10 6ES7 972-0BB11-0XA0 6ES7 972-0BB11-0XA0 6ES7 972-0AA01-0XA0

SIPROM GA

Application: communications software for remote maintenance and servicing of Siemens process gas analyzers; max. 12 analyzers with up to 4 components each. Networking of several gateways is possible when using the RS 485/Ethernet converter. The number of operatable analyzers is increased correspondingly.

Functions: display and saving of all analyzer data, remote operation of all analyzer functions, parameter and configuration settings; comprehensive diagnostics information, remote calibration; online help; cyclic saving of measured values and status on hard disk and exporting to commercially available application programs, downloading of new software.

Hardware requirements: PC/laptop; recommended with Pentium II 6 MB RAM, free COM port: RS 232 or RS 485, CD drive.

Software requirements: Windows 95 or NT 4 (SP6), Windows 2000 or Windows X-P.

SIPROM GA software German/English selectable during installation, comprising 1 CD, with installation instructions, software product certificate and registration form

Firmware retrofitting sets for older analyzers:

ULTRAMAT 23 (prior to SW version 2.06) All languages

ULTRAMAT 6

(prior to SW version 4.1)

- GermanEnglish
- FrenchSpanish
- Italian

OXYMAT 6

(prior to SW version 4.1)

- GermanEnglish
- French
- Spanish

• Italian

Order No.

S79610-B4014-A1

C79451-A3494-S501

C79451-A3478-S501 C79451-A3478-S502 C79451-A3478-S503 C79451-A3478-S504 C79451-A3478-S505

C79451-A3480-S501 C79451-A3480-S502 C79451-A3480-S503 C79451-A3480-S504 C79451-A3480-S505

Communication

PROFIBUS-DP/-PA

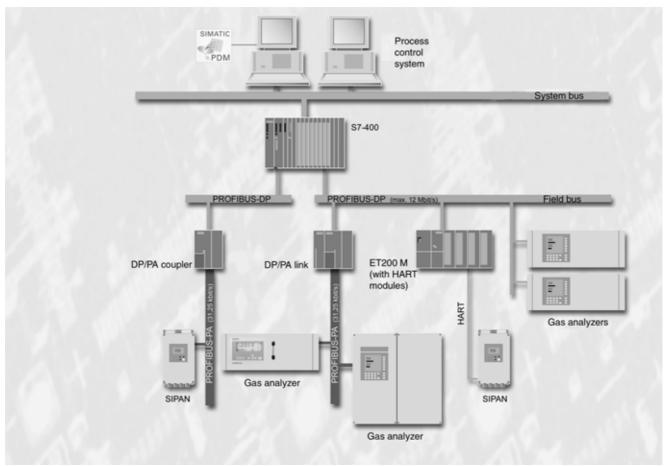


Fig. 4 Basic structure of a PROFIBUS system

The term "Field bus" describes a digital communications system with which distributed field devices in a plant are networked together via one single cable, and connected at the same time to programmable controllers or to a process control system. PROFIBUS is the leading field bus on the market. The **PROFIBUS-DP** version is widely used for production automation because of its high transmission rate for relatively small data quantities per device, whereas **PROFIBUS-PA** particularly takes into account the features required for process engineering, e.g. large data quantities and application in potentially explosive atmospheres.

User benefits can be found in the extremely high potentials for cost savings in all areas of the plant, covering configuring and commissioning, operation and maintenance, and up to later plant extensions.

Operation of the gas analyzers from a control system or separate PC is possible using the SIMATIC PDM (Process Device Manager) operator input tool which is software executing under Windows 95/98/NT and which can also be incorporated into the SIMATIC PCS 7 process control system. This permits clear display of both the incorporation of devices into the system and the complex parameter structure of the analyzers, permitting operation to be carried out simply by clicking.

The PROFIBUS user organization (PNO) is an independent international institution, and represents the interests of many vendors and users. In addition to services such as consultation, training

and device certification, its prime task is the further development, standardization and promotion of the PROFIBUS technology. The definition of a binding functionality for a device class in a profile is a prerequisite for the uniform response of devices from different vendors, the so-called interoperability. The **profile for analyzers** was defined as binding at the end of 1999, thus guaranteeing the interaction of all PROFIBUS-based devices in a plant.

This profile defines the functionality of the analyzers in a block model: e.g. the physical block describes the measuring procedure, analyzer and vendor names, serial number and operating state (operation, maintenance). Various functional blocks contain the execution of specific functions such as the processing of measured values or alarms. The transducer blocks describe the functionality of the actual measuring procedure and its control, e.g. preprocessing of a measured value, correction of cross-interferences, characteristics, measuring ranges as well as switching and control procedures. Protocols define the data transmission between the stations on the bus. A differentiation is made between cyclic and acyclic services. Cyclic services are used to transmit time-critical data such as measured values and statuses. The acyclic services permit the scanning or modification of device parameters during operation. All gas analyzers of Series 6, ULTRAMAT 6

ULTRAMAT/OXYMAT 6, OXYMAT 6, OXYMAT 61 and CALOMAT 6, as well as the ULTRAMAT 23 are suitable for PROFIBUS when fitted with the optional plug-in card (retrofitting also possible, see Ordering information).

Communication

Example interfering gas correction

Specification for interface cable

Characteristic impedance	100 to 300 Ω , with a measuring frequency of > 100 kHz	
Cable capacity	typ. < 60 pF/m	
Wire section	> 0.22 mm ² , corresp. AWG 23	
Cable type	twisted pairs, 1 x 2 wire of cable section	
Signal attenuation	max. 9 dB over the whole length	
Screening	copper braid shield or braid shield and foil screen	
Connection	pin 3 and pin 8	

Bus terminating resistors

The pin 3-7 and 8-9 of the first and last connector of a bus cable have to be bridged (see figure below).

Note

It is advisable to install a repeater on the device side in case of a cable length increasing 500 m or of high cross interferences.

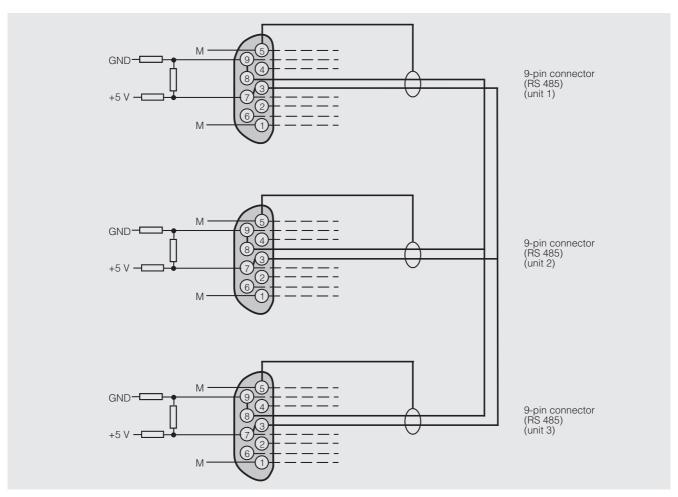


Fig. 5 Bus cable with connector assignments

Connections, assembly

Gas and electrical connections

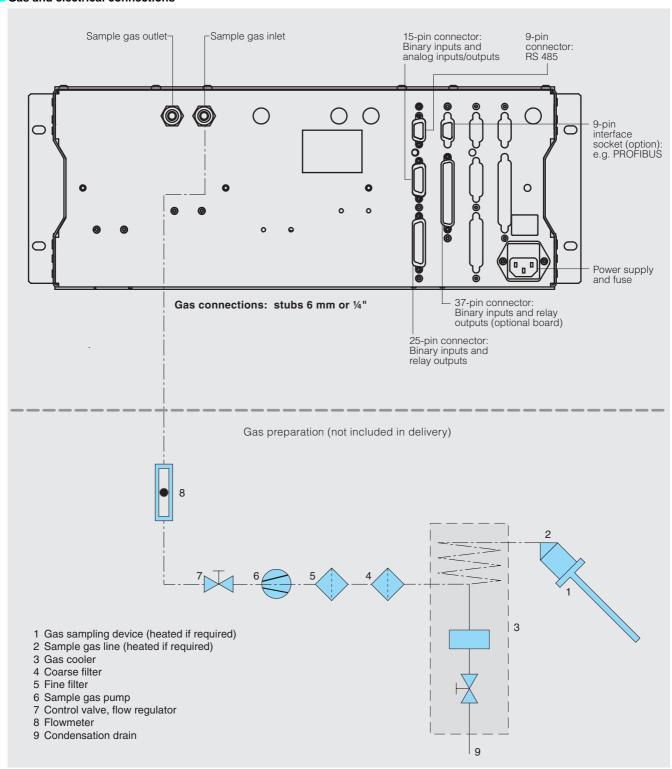


Fig. 6 CALOMAT 6, 19" unit, gas and electrical connections shown at top, gas preparation shown at bottom

Pin assignment

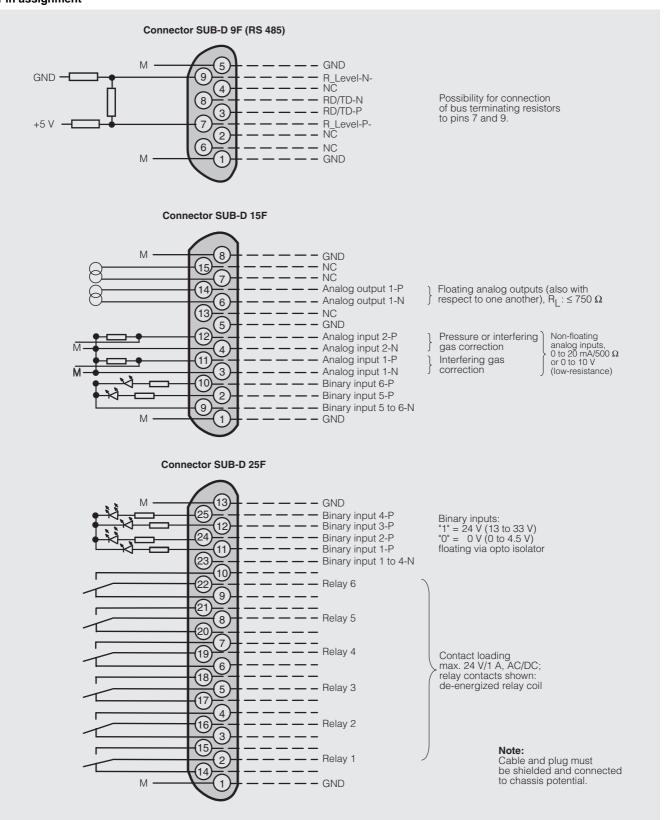


Fig. 7 CALOMAT 6, 19" unit, pin assignment

Electrical connection

Pin assignment (continued)

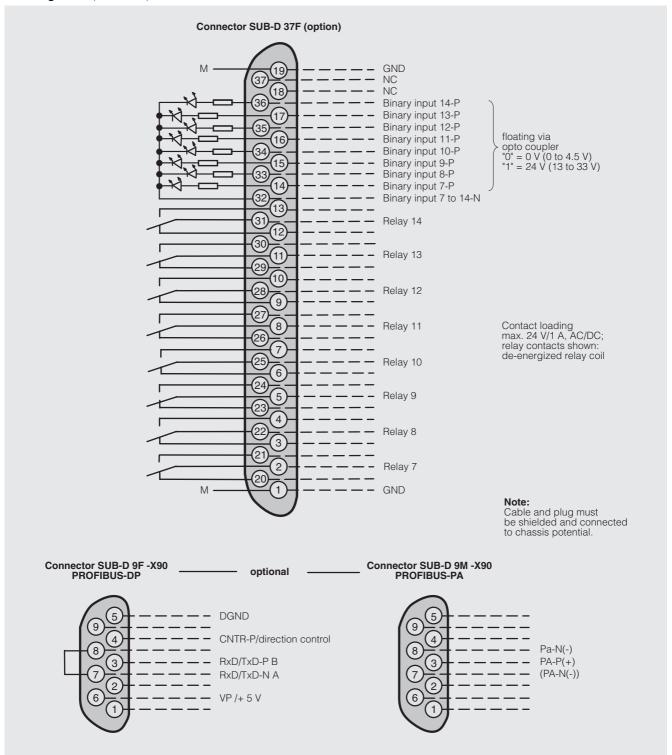


Fig. 8 CALOMAT 6, 19" unit, pin assignment of Autocal board and PROFIBUS connectors

General	
Measuring ranges	4, switchable internally and externally; autoranging is also possible
argest possible measuring	100 % H ₂ (smallest possible measuring span see page 4)
Measuring ranges with suppressed zero	Any zero point within 0 to 100 % can be achieved; smallest possible measuring span 5 % H ₂
Position of use	Front panel vertical
Conformity	CE identification EN 61326/A1, EN 61010/1
Design, enclosure	
Degree of protection	IP 20 according to EN 60529
Dimensions	see Fig. 9
Veight	Approx. 10 kg
Electrical characteristics	
EMC interference immunity ²) E lectro M agnetic C ompatibility)	According to standard requirements of NAMUR NE21 (08/98)
Electrical safety	According to EN 61010-1, overvoltage category II
Power supply see rating plate)	AC 100 -10 % to 120 V +10 %, 47 to 63 Hz or AC 200 -10 % to 240 V +10 %, 47 to 63 Hz
uses	100120 V: 1.0T/250 200240 V: 0.63T/250
Power consumption	Approx. 20 VA
as inlet conditions	
Sample gas pressure	8001100 hPa (absolute)
Sample gas flow	3090 l/h (0.51.5 l/min)
Sample gas temperature	0 to 50 °C
Sample cell temperature	Approx. 60 °C
Sample gas humidity	< 90 % RH ³)
Time response	
Varm-up period	< 30 min ⁴)
Response time (T ₉₀)	< 5 s
Damping electric time constant)	0 to 100 s, programmable
Dead time (purging time of gas path in analyzer at 1 l/min)	Approx. 0.5 s

Measuring response ⁵)			
Output signal fluctuation	< \pm 0.75 % of smallest possible measuring range specified on rating plate with an electronic time constant of 1 s (σ = 0,25 %)		
Zero drift	< 1 %/week of smallest possible measuring span specified on rating plate		
Repeatability	< 1 % of respective measuring span		
Linearity error	< ± 1 % of respective measuring span		
Influencing variables ⁵)			
Ambient temperature	< 1 %/10 K referred to the smallest possible measuring span according to rating plate		
Residual gases	Deviation in zero point (cross interference see Table page 4)		
Sample gas flow	< 0.1 % of smallest possible measur ing span according to rating plate with a change in flow of 10 l/h within the permissible flow range		
Sample gas pressure	< 1 % for a pressure variation of 100 hPa		
Power supply	< 0.1 % of output signal span with rated voltage ± 10 %		
Electric inputs and outputs			
Analog output	0/2/4 to 20 mA, floating; max. load 750 Ω		
Relay outputs	6, with changeover contacts, freely selectable, e.g. for range identifica- tion; loading capacity: 24 V AC/DC/ 1 A, floating		
Analog inputs	2, designed for 0/2/4 to 20 mA, for external pressure sensor and correction of influence of residual gas		
Binary inputs	6, designed for 24 V, floating, freely selectable, e.g. for range switching		
Serial interface	RS 485		
Options	Autocal function with 8 binary inputs and 8 relay outputs; also with PROFIBUS-PA or PROFIBUS-DP		
Ambient conditions			
Perm. ambient temperature	-30 to +70 °C during storage and transport, +5 to +45 °C during operation		
Permissible humidity ⁶)	< 90 % RH ³) as annual average, during storage and transport		

 $^{^{\}rm 1})\,$ Following DIN EN 61207 / IEC 1207. All data referred to binary gas mixture ${\rm H_2}$ in ${\rm N_2}.$

All signal wires must be shielded.
 RH: relative humidity.

⁴⁾ Maximum accuracy achieved after 2 hours.

⁵⁾ Referred to 1000 hPa absolute sample gas pressure, 0.5 l/min sample gas flow and 25 °C ambient temperature.

⁶) Dew point must not be fallen below.

Dimensions

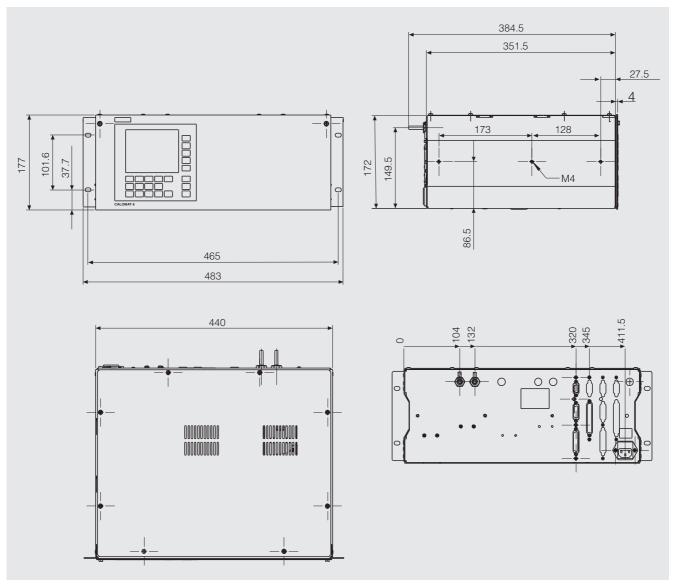


Fig. 9 CALOMAT 6, 19" unit, dimensions in mm

Ordering data		Order No.		
CALOMAT 6 gas analyzer		7MB2521-		
19" unit for installation in cabinets		- 0	AA	
			1 1	
Gas connections for sample gas				
Piping with outer diameter 6 mm		0		
Piping with outer diameter 1/4"		1		
Measured component	Smallest meas. range			
H_2 in N_2	0 - 1 / 100 %	AA		
H ₂ in N ₂ (blast furnace gas meas.) ¹)	0 - 1 / 100 %	A W		
H ₂ in N ₂ (converter gas meas.) ¹)	0 - 1 / 100 %	ΑX		
H ₂ in N ₂ (wood gasification) ¹)	0 - 1 / 100 %	ΑY		
H ₂ in Ar	0 - 1 / 100 %	A B		
H ₂ in NH ₃	0 - 1 / 100 %	A C		
He in N ₂	0 - 2 / 100 %	ВА		
He in Ar	0 - 2 / 100 %	ВВ		
He in H ₂	0 - 10 / 80 %	ВС		
Ar in N ₂	0 - 10 / 100 %	CA		
Ar in O ₂	0 - 10 / 100 %	СВ		
CO ₂ in N ₂	0 - 20 / 100 %	DA		
CH ₄ in Ar	0 - 15 / 100 %	EA		
NH ₃ in N ₂	0 - 10 / 30 %	FA		
Supplementary electronics				
Without		0		
Autocal function				
• With additional 8 binary inputs/output	uts	1		
With additional 8 binary inputs/output and PROFIBUS-PA interface	uts	6		
With additional 8 binary inputs/output and PROFIBUS-DP interface	uts	7		
Power supply				
100 V to 120 V AC, 47 to 63 Hz			0	
200 V to 240 V AC, 47 to 63 Hz			1	
Language				
German			0	
English			1	
French			2	
Spanish			3	
Italian			4	

¹⁾ Prepared for supplying external correction of cross interferences.

19" unit

Ordering data CALOMAT 6

Ordering data (continued)

Further versions Please add "-Z" to Order No. and specify Order code	Order code		
RS 485/RS 232 converter	A11		
Slide rails (2 rails)	A31		
Set of Torx tools, socket spanner	A32		
TAG labels (customer-defined inscriptions)	B03		
Customer acceptance (in factory before delivery) 1)	Y01		
Drift recording ²)	Y03		
Measuring range in plain text if different from standard setting ³)	Y11		
Retrofitting sets	Order No.		
RS 485/Ethernet converter	C79451-A3364-D61		
RS 485/RS 232 converter	C79451-Z1589-U1		
Autocal function with 8 binary inputs/outputs	C79451-A3480-D511		
Autocal function with 8 binary inputs/outputs and PROFIBUS-PA	A5E00057307		
Autocal function with 8 binary inputs/outputs and PROFIBUS-DP	A5E00057312		

2) Drift recording: an XT recording is supplied when the analyzer is delivered: zero drift with 16 hours continuous operation and sensitivity drift (largest measuring range) with 6 hours continuous operation.

Measuring range 1: 0 to smallest measuring range Measuring range 2: 0 to 10 % (25 %)
Measuring range 3: 0 to 25 % (50 %)
Measuring range 4: 0 to largest measuring range. ³) Standard setting:

¹⁾ Customer acceptance: ½ day at factory in presence of customer. The following work is carried out: comparison of analyzer with ordering data; linearization check (zero, mid-point value and full-scale value); reproducibility check with calibration gas (recording in each case on XT recorder, logging of results).

Gas and electrical connections (unit underside)

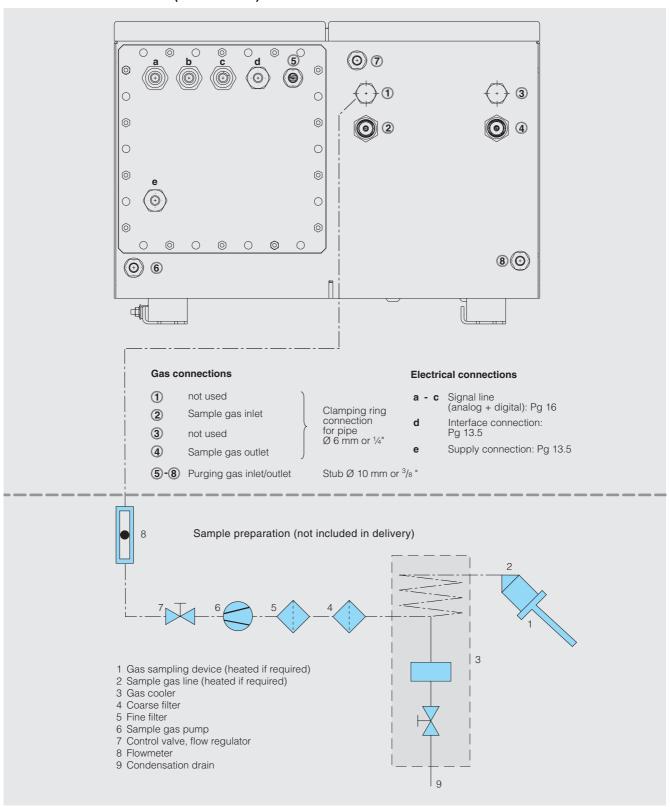


Fig. 10 ULTRAMAT 6, field unit, gas and electrical connections shown at top, installation preparation with external gas preparation (example) shown at bottom

Electrical connection

Pin assignment

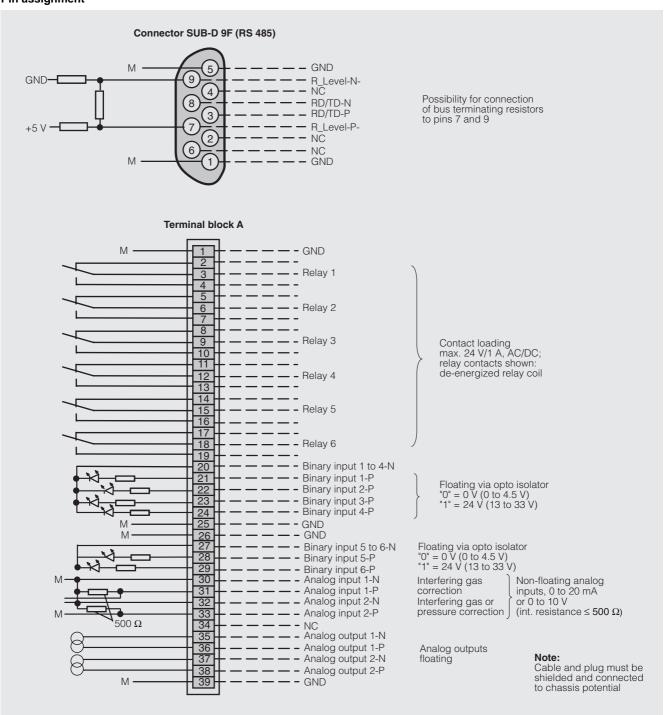


Fig. 11 CALOMAT 6, field unit, connector and terminal assignment

Pin assignment (continued)

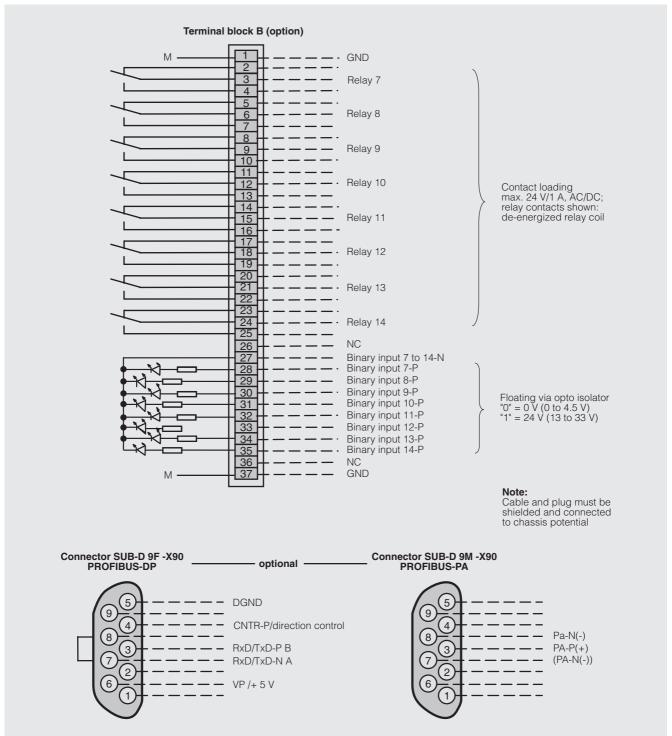


Fig. 12 CALOMAT 6, field unit, connector and terminal assignment of the Autocal board and PROFIBUS connectors

Field unit

Technical data

Technical data 1)	
General	
Measuring ranges	4, switchable internally and externally; autoranging is also possible
Largest possible measuring span	100 % $\rm H_2$ (smallest possible measuring span see page 4)
Measuring ranges with suppressed zero	Any zero point within 0 to 100 % can be achieved; smallest possible measuring span 5 % $\rm H_2$
Position of use	Front panel vertical
Conformity	CE identification to EN 61326/A1, EN 61010/1
Design, enclosure	
Degree of protection	IP 65 according to EN 60529
Dimensions	see Fig. 13
Weight	Approx. 25 kg
Electrical characteristics	
EMC interference immunity ²) (Electro M agnetic C ompatibility)	According to standard requirements of NAMUR NE21 (08/98)
Electrical safety	According to EN 61010-1, overvoltage category II
Power supply (see rating plate)	AC 100 -10 % to 120 V +10 %, 47 to 63 Hz or AC 200 -10 % to 240 V +10 %, 47 to 63 Hz
Power consumption	Approx. 20 VA
Fuses	100120 V: 1.0T/250 200240 V: 0.63T/250
Gas inlet conditions	
Sample gas pressure	8001100 hPa (absolute)
Sample gas flow	3090 l/h (0.51.5 l/min)
Sample gas temperature	0 to 50 °C
Sample cell temperature	Approx. 60 °C
Sample gas humidity	< 90 % RH ³)
Purging gas pressure • permanent • for short periods	165 hPa above environment max. 250 hPa above environment
Time response 4)	
Warm-up period	< 30 min ⁵)
Response time (T ₉₀)	< 5 s
Damping (electric time constant)	0 to 100 s, programmable
Dead time (at 1 l/min)	Approx. 0.5 s

Measuring response 4)	
Output signal fluctuation ⁵)	$<\pm0.75$ % of smallest possible measuring range specified on rating plate with an electronic time constant of 1 s $(\sigma=0.25$ %)
Zero drift	< 1 %/week of smallest possible measuring span specified on rating plate
Repeatability	< 1 % of respective measuring spar
Linearity error	< ± 1 % of respective measuring span
Influencing variables 4)	
Ambient temperature	< 1 %/10 K referred to the smallest possible measuring span according to rating plate
Residual gases	Deviation in zero point (cross interference see Table page 4)
Sample gas flow	< 0.2 % of smallest possible measur ing span according to rating plate with a change in flow of 0.1 l/h within the permissible flow range
Sample gas pressure	< 1 % for a pressure variation of 100 hPa
Power supply	$<$ 0.1 % of output signal span with rated voltage \pm 10 %
Electric inputs and outputs	
Analog output	0/2/4 to 20 mA, floating; max. load 750 Ω
Relay outputs	6, with changeover contacts, freely selectable, e.g. for range identifica- tion; loading capacity: 24 V AC/DC/ 1 A, floating
Analog inputs	2, designed for 0/2/4 to 20 mA, for external pressure sensor and correction of influence of residual gas (correction of cross interference)
Binary inputs	6, designed for 24 V, floating, freely selectable, e.g. for range switching
Serial interface	RS 485
Options	Autocal function with 8 binary inputs and 8 relay outputs; also with PROFIBUS-PA or PROFIBUS-DP
Ambient conditions	
Perm. ambient temperature	-30 to +70 °C during storage and transport, +5 to +45 °C during operation
Permissible humidity ⁶)	< 90 % RH ³) as annual average, during storage and transport

³) RH: relative humidity.

 $^{^{\}rm 1})$ Following DIN EN 61207 / IEC 1207. All data referred to binary gas mixture $\rm H_2$ in $\rm N_2$.

²⁾ All signal wires must be shielded.
Errors of up to 4 % of the smallest measuring range can occur in zones with strong electromagnetic interferences.

A Referred to 1000 hPa absolute sample gas pressure, 0.5 l/min sample gas flow and 25 °C ambient temperature.

⁵⁾ Maximum accuracy achieved after 2 hours.

⁶⁾ Dew point must not be fallen below.

Dimensions

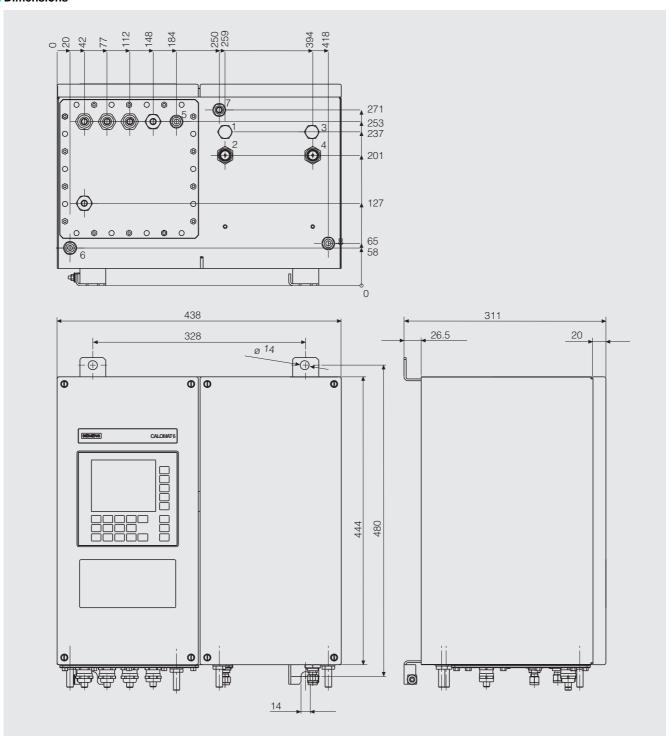


Fig. 13 CALOMAT 6, field unit, dimensions in mm

CALOMAT 6 Field unit

Ordering data CALOMAT 6F

Ordering data		Order No.	
CALOMAT 6F gas analyzer		7MB2511-	cannot be combined
for field mounting		- 0	A
Gas connections for sample gas		-	T TT
Clamping ring connection with pipe of	outer diameter 6 mm	0	
Clamping ring connection with pipe of		1	
Measured component	Smallest range	• •	
H ₂ in N ₂	0 - 1 / 100 %	AA	
H_2 in N_2 (blast furnace gas meas.) ¹)		A W	
H_2 in N_2 (converter gas meas.) ¹)	0 - 1 / 100 %	AX	
H_2 in N_2 (wood gasification) ¹)	0 - 1 / 100 %	AY	
H ₂ in Ar	0 - 1 / 100 %	A B	
H ₂ in NH ₃	0 - 1 / 100 %	AC	
He in N ₂	0 - 2 / 100 %	BA	
He in Ar	0 - 2 / 100 %	BB	
He in H ₂	0 - 10 / 80 %	BC	
Ar in N ₂	0 - 10 / 100 %	CA	
Ar in O_2	0 - 10 / 100 %	СВ	
	0 - 10 / 100 %	DA	
CO_2 in N_2		EA	
CH ₄ in Ar	0 - 15 / 100 %		
NH ₃ in N ₂	0 - 10 / 30 %	FA	
Supplementary electronics			
Without		0	
Autocal function			
With additional 8 binary inputs/outp With a delitional 8 binary inputs/outp		1	
 With additional 8 binary inputs/outp and PROFIBUS-PA interface 	uts	6	6
 With additional 8 binary inputs/outp and PROFIBUS-DP interface 	uts	7	7
With additional 8 binary inputs/outp and PROFIBUS-PA Ex i interface	uts	8	
Power supply			
100 V to 120 V AC, 47 to 63 Hz		O	0
200 V to 240 V AC, 47 to 63 Hz		1	1
Explosion protection			
Without			A
Certificate: ATEX 100; II 3G EEx nR; r ure (Ex zone 2) (only for gas mixtures			В
Certificate: ATEX 100; II 2/3G EEx nR	P (Ex zone 2) ²)		С
FM, Class 1, Div. 2 ²)			D
ATEX 100, Ex-Zone 1 (mode: leakage compensation) ²)			E E
ATEX 100, Ex-Zone 1 (mode: continuous purging) ²)			F F
Language			
German			0
English			1
French			2
Spanish			3
Italian			4

¹⁾ Prepared for supplying external correction of cross interferences.2) Only in conjunction with an approved purging unit.

CALOMAT 6 Field unit

Ordering data CALOMAT 6F

Ordering data (continued)

Further versions Please add "-Z" to Order No. and specify Order code	Order code
RS 485/RS 232 converter	A11
Set of Torx tools, socket spanner	A32
TAG labels (customer-defined inscriptions)	B03
Customer acceptance (in factory before delivery) 1)	Y01
Drift recording ²)	Y03
Extended customer acceptance of analyser + function demonstration of the BARTEC Ex purging enclosure	Y04
Measuring range in plain text if different from standard setting ³)	Y11
Additional units for explosion-proof versions, ATEX categorie 2G (zone 1)	Order No.
Bartec EEX P control unit, 230 V, "leakage compensation"	7MB8000-2BA
Bartec EEX P control unit, 115 V, "leakage compensation"	7MB8000-2BB
Bartec EEX P control unit, 230 V, "continuous purging"	7MB8000-2CA
Bartec EEX P control unit, 115 V, "continuous purging"	7MB8000-2CB
Explosion-protected isolation amplifier	7MB8000-3AA
Explosion-protected isolating relays	7MB8000-4AA
Differential pressure switch for corrosive gases	7MB8000-5AA
Differential pressure switch for non-corrosive gases	7MB8000-5AB
Flame inhibitor made of stainless steel	7MB8000-6AA
Flame inhibitor made of Hastelloy	7MB8000-6AB
Additional units for explosion-proof designs, ATEX category 3G (zone 2)	Order No.
Ex purging unit Minipurge FM	7MB8000-1AA
Bartec EEx p control unit (for units with order code E12)	7MB8000-1BA
Retrofitting sets	Order No.
RS 485/Ethernet converter	C79451-A3364-D61
RS 485/RS 232 converter	C79451-Z1589-U1
Autocal function with 8 binary inputs/outputs	A5E00064223
Autocal function with 8 binary inputs/outputs and PROFIBUS-PA	A5E00057315
Autocal function with 8 binary inputs/outputs and PROFIBUS-DP	A5E00057318
Autocal function with 8 binary inputs/outputs and PROFIBUS-PA Ex i (requires Firmware 4.110)	A5E00057317

3) Standard setting: Measuring range 1: 0 to smallest measuring range Measuring range 2: 0 to 10 %

Measuring range 3: 0 to 25 %

Measuring range 4: 0 to 100 %

¹⁾ Customer acceptance: ½ day at factory in presence of customer.

The following work is carried out: comparison of analyzer with ordering data; linearization check (zero, mid-point value and full-scale value); reproducibility check with calibration gas (recording in each case on XT recorder, logging of results).
2) Drift recording: an XT recording is supplied when the analyzer is delivered: zero drift with 16 hours continuous operation and sensitivity drift (largest measuring range) with 6 hours continuous operation.

Explosion-proof design

Explosion-proof design

Use of the CALOMAT 6 in hazardous areas

Suitability-tested field analyzers of series 6 must be used to measure gases in hazardous areas. The preferred explosion protection for these analyzers is the pressurized enclosure EEx p for zone 1 or the simplified pressurized enclosure EEx n P for zone 2. In addition, these analyzers must be connected to monitoring equipment which must also be suitability-tested for zone 1.

Exception: a pressurized enclosure is not required in zone 2 for the measurement of gases whose composition always remains below the lower explosion limit (LEL); in this case it is sufficient for the field housing to be gas damp-proof (type of protection EEx n R).

Following pre-purging of 5 minutes, the monitoring equipment ensures that no gas damp can enter the housing, and accumulation of the sample gas in the housing is prevented. The volume flow during the pre-purging phase is > 50 l/min. The protective gas is usually fed into the analyzer housing from a supply network via the monitoring equipment.

Ex zone 1

Two versions of pressurized enclosure EEx p complying with directive 94/9/EC are available for use in zone 1:

 Pressurized enclosure with compensation of losses resulting from leaks

Only that volume of protective gas required to hold an overpressure of at least 50 Pa compared to the sample gas pressure *and* atmospheric pressure is fed into the housing. The maximum purging gas pressure is 165 hPa; this causes a max. permissible sample gas pressure of 160 hPa.

Test certificate: PTB 00 ATEX 2022 X Analyzer identification: II 2 G EEx p [ia] ia IIC T4

Pressurized enclosure with continuous purging
 Protective gas continuously flows through the housing with a
 volume flow of at least 1 l/min; furthermore, the flow results in
 an overpressure in the housing of at least 50 Pa compared to
 atmospheric pressure.

The max. permissible purging gas pressure is 25 hPa. The max. permissible sample gas pressure is equivalent to the analyzer sample gas pressure.

Test certificate: TÜV 01 ATEX 1708 X Analyzer identification: II 2 G EEx p [ia] ia IIC T4

The fundamental safety requirements are satisfied by compliance with the European standards

EN 50014:1997, EN 50016:1995, EN 50020:1994 and EN 954:1996

The EExp monitoring equipment is a stand-alone unit which is connected electrically and pneumatically to the analyzer. Ex protection is only provided when these two units are connected together.

Ex zone 2

Two versions complying with directive 94/9/EC are available for use in zone 2:

Ex protection resulting from gas damp-proof housing
 The housing is sealed sufficiently such that gas damp cannot penetrate. With this type of protection, only sample gases may be connected which are below the LEL.

Test certificate: TÜV 01 ATEX 1686 X Analyzer identification: II 3 G EEx n R II T6

• Simplified pressurized enclosure with continuous purging
This type of protection must always be selected if flammable
gases or gas mixtures are to be connected.
Protective gas continuously flows through the housing with a
volume flow of at least 1 l/min; furthermore, the flow results in
an overpressure in the housing of at least 50 Pa compared to
atmospheric pressure. Manually controlled pre-purging with
the analyzer power supply switched off is sufficient for the simplified pressurized enclosure. It is not necessary for the analyzer to be switched off automatically should the protective gas
fail

Test certificate: TÜV 01 ATEX 1697 X Analyzer identification: II 2/3 G EEx n P II T4

The fundamental safety requirements are satisfied by compliance with the European standards

EN 50021:1999, EN 60079:1997, Sec. 13 and ZH 1/10, Sec. 1.

The EEx nP monitoring equipment is a stand-alone unit which is connected electrically and pneumatically to the analyzer. Ex protection is only provided when these two units are connected together.

FM Class 1 Div 2

The same applies here as to the simplified pressurized enclosure with continuous purging; the required Ex protection is only provided when appropriate equipment is connected.

Type of protection and flame inhibitor

It generally applies that selection of the protective gas and use of flame inhibitors depend on the type of sample gas:

- Connection of combustible gases above the LEL always require an inert gas (e.g. N₂) as the protective gas. Furthermore, the process must be protected by flame inhibitors if it cannot be excluded that explosive gas mixtures could occasionally be present in the sample gas path.
- Gas mixtures which could be frequently or permanently explosive must not be connected!
- With gases below the LEL, air can also be used as the protective gas, and flame inhibitors can be omitted.

CALOMAT 6 Explosion-proof design

Explosion-proof design

	Sample gas non-flammable, or permanently below the lower explosive limit (LEL)	Sample gas seldom above LEL, and only briefly in such cases	Sample gas occasionally above LEL
Zone			
0	Not possible	Not possible	Not possible
1	•Analyzer in ATEX 100a - EEx p version	•Analyzer in ATEX 100a - EEx p version	• <u>Analyzer</u> in ATEX 100a - EEx p version
	•Tube for gas path	•Tube for gas path	•Tube for gas path •Flame inhibitors in sample gas inlet/outlet 1)
	EEx p control unit in mode "Leakage compensation"	Sample gas pressure < 165 hPa, fail-safe: •EEx p control unit in mode "Leakage compensation"	Sample gas pressure < 165 hPa, fail-safe: •EEx p control unit in mode "Leakage compensation"
		Differential pressure switch (if the sample gas pressure is not controlled fail-safe)	Differential pressure switch (if the sample gas pressure is not controlled fail-safe)
		Sample gas pressure occasionally > 165 hPa: •EEx p control unit in mode "Continuous purging"	Sample gas pressure occasionally > 165 hPa: •EEx p control unit in mode "Continuous purging"
2	Analyzer in field housing with degree of protection EEx nR (restricted breathing enclosure)	Analyzer in field housing with degree of protection EEx nP	Analyzer in field housing with degree of protection EEx nP
	•Tube for gas path	•Tube for gas path	•Tube for gas path •Flame inhibitors in sample gas inlet/outlet 1)
		Simplified pressurized enclosure with continuous purging with inert gas or EEx nRP (restricted breathing enclosure for electronics unit, and simplified pressurized enclosure for physical unit with continuous purging with inert gas)	Simplified pressurized enclosure with continuous purging with inert gas

Table 1 Explosion-proof configuration – Selection criteria in principle

Additional units (Ex zone 1)

	Signal wire guide		
	Ex 1 → Ex 1	Ex 1 $ ightarrow$ Ex 2	Ex 1 \rightarrow Ex free
Ex-i isolation amplifier	required	conditional use (when energy recovery is not excluded)	conditional use (when energy recovery is not excluded)
Isolating relais	required	not required	not required
Pressure switches			
 non-flammable gases 	• not required	• not required	• not required
flammable gases	• required (when the user pressure is not fail-safe)	 required (when the user pressure is not fail-safe) 	 required (when the user pressure is not fail-safe)
Flame inhibitors	see above	see above	see above

Table 2 Additional units

¹⁾ The flame inhibitor in the sample gas outlet is not necessary when the sample gas is drawn in a non-explosive area.

Explosion-proof design, Ex zone 1

BARTEC EEx p control unit

Description "Leakage compensation"

The APEX 2003.SI/A2 control unit controls and monitors the prepurging phase and the operating phase of gas analyzers with "Containment Systems".

The control unit redundantly monitors the set overpressure of the purging gas. When the overpressure decreases, it is corrected to the adjustable setpoint (max. purging gas pressure 165 hPa).

4 programmable relay outputs and 8 relay contacts are available to interrupt the data lines.

Additional function

Due to the connection of additional pressure sensors, the internal pressure of the enclosure is maintained at a pressure higher than the sample gas with a proportional valve. During the prepurging phase the purging gas flow is max. 4100 NI/h with an internal enclosure pressure of 50 hPa.

4 programmable relay inputs and 8 relay contacts are available to separate the data lines.

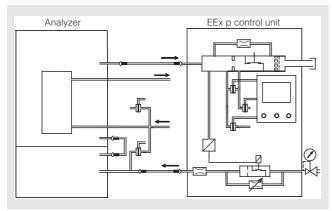


Fig. 14 BARTEC control unit, gas connection diagram

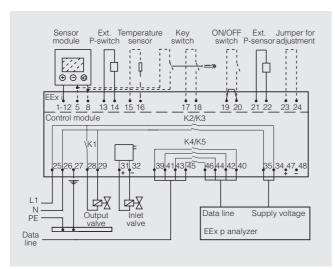


Fig. 15 BARTEC control unit, electric connection diagram

Guidelines	EC EMC guideline 89/336/EEC EC low voltage RL 73/23/EWG Ex guideline 94/9EC
Design	Explosion-protected enclosure (EEx e) with viewing window in the cover
Enclosure material	glas-fiber reinforced polyester
Degree of protection	IP 65
Terminals	2.5 mm, stranded conductor
Pressure sensors	MIN A = 0 to 300 hPa MIN B = 0 to 300 hPa MAX = 0 to 300 hPa MAX 1 = 0 to 300 hPa DIFF A = 0 to 25 hPa DIFF B = 0 to 25 hPa
Prepurging time	0 to 99 min; 5 s delayed
Weight	11 kg
Electrical data	
Supply voltage	230 V AC (115 V AC)
,	,
Power consomption	21 W /230 V
Power consomption NO contact	· · · · · · · · · · · · · · · · · · ·
•	21 W /230 V K2/3; max. 250 V, 5 A with $\cos \varphi = 1$, K4/K5; supply voltage or floating,
NO contact	21 W /230 V K2/3; max. 250 V, 5 A with $\cos \phi = 1$, K4/K5; supply voltage or floating, max. 250 V, 5 A with $\cos \phi = 1$
NO contact Communication Temperature switching value	21 W /230 V K2/3; max. 250 V, 5 A with cos φ = 1, K4/K5; supply voltage or floating, max. 250 V, 5 A with cos φ = 1 RS 485 interface
NO contact Communication Temperature switching value (option)	21 W /230 V K2/3; max. 250 V, 5 A with cos φ = 1, K4/K5; supply voltage or floating, max. 250 V, 5 A with cos φ = 1 RS 485 interface
Communication Temperature switching value (option) Explosion-protected type	21 W /230 V K2/3; max. 250 V, 5 A with $\cos \varphi = 1$, K4/K5; supply voltage or floating, max. 250 V, 5 A with $\cos \varphi = 1$ RS 485 interface 0 to + 40 °C

Technical data

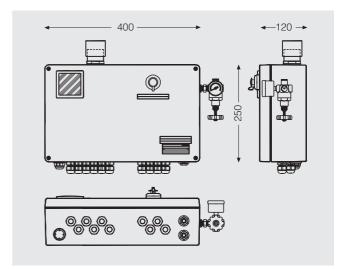


Fig. 16 BARTEC control unit, dimensions in mm

Technical data

BARTEC EEx p control unit

Description "Continuous purging"

The APEX 2003.SI/A4 control unit controls and monitors the prepurging phase and the operating phase of gas analyzers with "Containment Systems".

The control unit redundantly monitors a continuous current of protection gas through the connected analyzer and thereby dilutes the eventually appearing sample gas below the lower explosive limit (max. purging gas pressure 25 hPa).

4 programmable relay outputs and 8 relay contacts are available to interrupt the data lines.

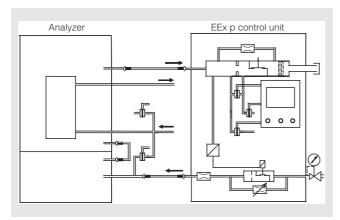


Fig. 17 BARTEC control unit, gas connection diagram

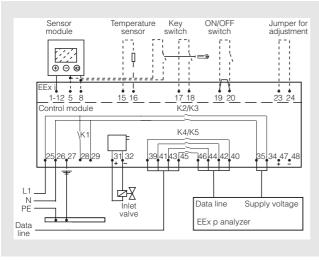


Fig. 18 BARTEC control unit, electric connection diagram

EC EMC guideline 89/336/EEC EC low voltage RL 73/23/EWG Guidelines Ex guideline 94/9EC Design Explosion-protected enclosure (EEx e) with viewing window in the cover Enclosure material glas-fiber reinforced polyester IP 65 Degree of protection Terminals 2.5 mm, stranded conductor $\begin{array}{ll} \text{MIN A} &= 0 \text{ to } 25 \text{ hPa} \\ \text{MIN B} &= 0 \text{ to } 25 \text{ hPa} \end{array}$ Pressure sensors = 0 to 25 hPa MAX 1 = 0 to 25 hPa DIFF A = 0 to 25 hPa DIFF B = 0 to 25 hPaPrepurging time 0 to 99 min; 5 s delayed Weight 10 kg Electrical data 230 V AC (115 V AC) Supply voltage Power consomption 14 W / 230 V NO contact K2/3; max. 250 V, 4 A with K4/K5; supply voltage or floating, max. 250 V, 5 A with $\cos \varphi = 1$ Communication RS 485 interface 0 to + 40 °C Temperature switching value (option) **Explosion-protected type** Marking EEx e d ib [ia p] IIC T4/T6 **DMT 99 ATEX E 082** Certification Ambient temperature -20 to +40 °C

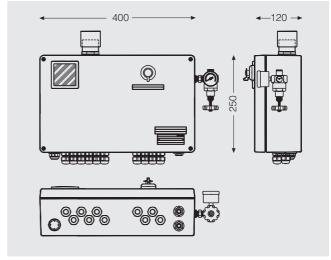


Fig. 19 BARTEC control unit, dimensions in mm

CALOMAT 6 Explosion-proof design, Ex zone 2

BARTEC EEx p control unit

Description, for flammable gases

Compact EEx p control unit for the explosion protection of pressurized analyzers in zone 2, inclusive redundant surveillance of the purging gas pressure and flow during purging and operating phase.

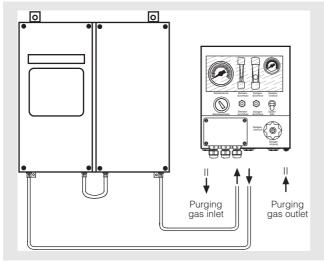


Fig. 20 BARTEC control unit, gas connection diagram

Technical data	
Guidelines	EC EMC guideline 89/336/EEC RL 73/23/EWG Ex guideline 94/9EC
Design	Explosion-protected enclosure (EEx e) with viewing window in the cover
Enclosure material	stainless steel
Terminals	2.5 mm, stranded conductor
Pressures Purging gas pressure Purging gas flow Operating pressure Operating flow	0.2 MPa to 1,0 MPa (0.2 MPa) 0 to 3.5 m ³ /h (2,0 m ³ /h) 0 to 60 hPa (8 hPa) 0 to 1.5 l/min (1 l/min)
Weight	4.3 kg
Electrical data	
Line voltage	0230 V AC, 030 V DC
Switching capacity	max. 6 A with $\cos \varphi = 1$ / max. AC 253 V max. 1.5 A with $\cos \varphi = 0,6$ / max. AC 253 V max. 2 A with L/R ~ 0 ms / max. DC 30 V
Explosion-protected type	
Marking	EEx n A C R (P) II C T6
Certification	TÜV 01 ATEX 1748 X
Ambient temperature	-20 to +60 °C

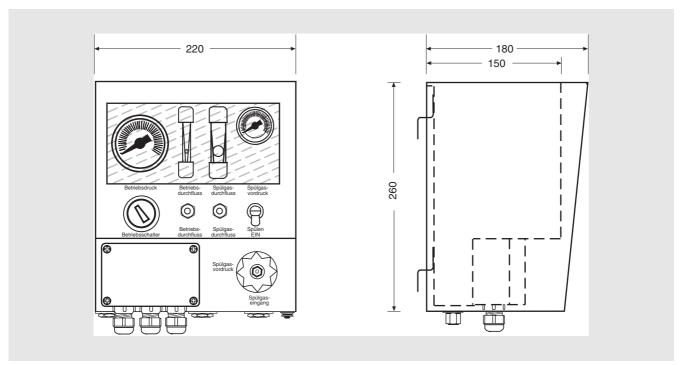


Fig. 21 BARTEC control unit, dimensions in mm

CALOMAT 6 Explosion-proof design, Ex zone 2

Ex purging unit MiniPurge FM

Description

The Ex purging unit MiniPurge FM is used to monitor the pressure during continuous purging of an analyzer with purging gas or inert gas. If the pressure falls below the set value, an optical display is triggered and the relay is activated. This monitoring unit is driven by the purging gas pressure and therefore does not require an additional power supply.

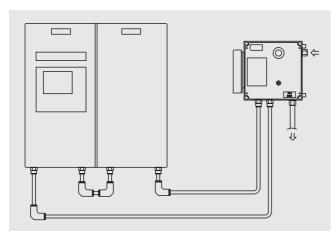


Fig. 22 MiniPurge, gas connections

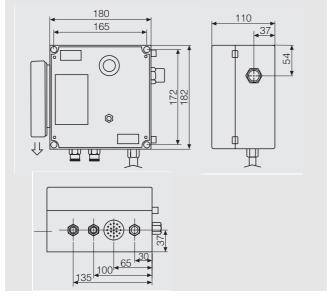


Fig. 23 MiniPurge, dimensions in mm

Technical data

Classification Class 1 Division 2 Enclosure dimensions (in mm) 444 x 438 x 275 Enclosure volume (I) Approx. 50 I

Enclosure pressure (normal) 1 hPa

Certificate of compliance 1X8A4.AE / 0B3A3.AE FM certificate

Reaction upon failure of pressure Opening of switching contact, and alarm via signal indicator

(red display)

System type MiniPurge complete system

Operating mode Continuous purging Type of housing Strengthened polycarbonate

RAL 7035 gray with transparent Enclosure surface cover

Pressure supply Dry, oil-free air or inert gas with regulated pressure of approx.

2000 hPa (30 psi) at inlet of MiniPurge

Supply connections Pressure via 1/4 BSPP connec-

tion, pressure hose at least 1/2" or

Pneumatically driven color signal: green/red Display (signal indicator)

Switching contact Via SPCO switch approved for Class 1 Division 2

Lower operating limit 0.5 hPa set Settings relative to purging gas flow of 1

to 2 l/min

Is defined by operator, and con-Pre-purging time

trolled manually

Enclosure pressure limitation By means of stainless steel

RLV 25 output valve with integral flame inhibitor; opens at 10 hPa ± 10 %

Spare parts

Proposition of spare parts for a 2-year service

Ordering data

Description	Order No.
Analyzer section	
Sample cell without enclosure and piping	A5E00095332
O-ring set (FFKM)	A5E00124182
Electronics	
Fuse T 0.63 A (230-V version)	W79054-L1010-T630
Fuse T 1.0 A (115-V version)	W79054-L1011-T100
Front panel without LC-display	C79165-A3042-B508
LC-display	W75025-B5001-B1
Adapter board LCD/keyboard	C79451-A3474-B605

CALOMAT 6 Documentation

Catalog extract	Order No.
CALOMAT 6 Wärmeleitfähigkeits- Gasanalysator (German)	E86060-K3510-B181-A2
CALOMAT 6 Thermal Conductivity Gas Analyzer (English)	E86060-K3510-B181-A2-7600
CALOMAT 6 Analyseur de gaz à conductibilité thermique (French)	E86060-K3510-B181-A2-7700

Manual	Order No.
CALOMAT 6E Wärmeleitfähigkeits- Gasanalysator (German)	A5E00123066
CALOMAT 6E Thermal Conductivity Gas Analyzer (English)	A5E00123067
CALOMAT 6E Analyseur de gaz à conductivité thermique (French)	A5E00123068
CALOMAT 6E Analizzatore di gas a conductività termica (Italian)	A5E00123069
CALOMAT 6E Analizador de gases por conductividad térmica (Spanish)	A5E00123070
ULTRAMAT 6, OXYMAT 6, OXYMAT 61, CALOMAT 6, ULTRAMAT 23 Schnittstelle/Interface PROFIBUS-DP/-PA (German and English)	A5E00054148

Conditions of sale and delivery **Export regulations, contact addresses**

Terms and Conditions of Sale and Delivery

in the Federal Republic of Germany

By using this catalog you can acquire hardware and software products described therein from the Siemens AG subject to the following terms. Please note! The scope, the quality and the conditions for supplies and services, including software products, by any Siemens entity having a registered office outside the Federal Republic of Germany, shall be subject exclusively to the General Terms and Conditions of the respective Siemens entity.

for customers based in the Federal Republic of Germany

The General Terms of Payment as well as the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry shall apply.

For software products, the **General License Conditions for Soft**ware Products for Automation and Drives for Customers with Seat or registered Office in Germany shall apply.

for customers with a seat or registered office outside the **Federal Republic of Germany**

The General Terms of Payment as well as the General Conditions for Supplies of Siemens, Automation and Drives for Customers with a Seat or registered Office outside of Germany shall apply.

For software products, the General License Conditions for Software Products for Automation and Drives for Customers with Seat or registered Office outside of Germany shall apply.

The prices are in € (Euro) ex works, exclusive packaging.

The sales tax (value added tax) is not included in the prices. It shall be debited separately at the respective rate according to the applicable legal regulations.

In addition to the prices of products which include silver and/or copper, surcharges may be calculated if the respective limits of the notes are exceeded.

Prices are subject to change without prior notice. We will debit the prices valid at the time of delivery.

The dimensions are in mm. Illustrations are not binding.

Insofar as there are no remarks on the corresponding pages, - especially with regard to data, dimensions and weights given these are subject to change without prior notice.

Comprehensive Terms and Conditions of Sale and Delivery are available free of charge from your local Siemens business office under the following Order Nos.:

- 6ZB5310-0KR30-0BA0 (for customers based in the Federal Republic of Germany)
- 67B5310-0KS53-0BA0 (for customers based outside of the Federal Republic of Germany)

or download them from the Internet: (A&D Mall Online-Help System)

Export regulations

The products listed in this catalog / price list may be subject to European / German and/or US export regulations.

Therefore, any export requiring a license is subject to approval by the competent authorities.

According to current provisions, the following export regulations must be observed with respect to the products featured in this catalog / price list:

AL	Number of the German Export List.
	Products marked other than "N" require an export license.
	In the case of software products, the export designations of the relevant data medium must also be generally adhered to.
	Goods labeled with an "AL not equal to N" are subject to a European or German export authorization when being exported out of the EU.
ECCN	Export Control Classification Number.
	Products marked other than "N" are subject to a reexport license to specific countries.
	In the case of software products, the export designations of the relevant data medium must also be generally adhered to.
	Goods labeled with an " \underline{ECCN} not equal to \underline{N} " are subject to a US re-export authorization.

Even without a label or with an "AL: N" or "ECCN: N", authorization may be required due to the final destination and purpose for which the goods are to be used.

The deciding factors are the AL or ECCN export authorization indicated on order confirmations, delivery notes and invoices. Subject to change without prior notice.

If you have any questions, please contact your local sales representative or any of the contact addresses below.

Siemens Applied Automation Siemens Pte. Limited Siemens AG

A&D PI 2M Process Analytics Oestliche Rheinbrueckenstr. 50 500 West Highway 60 Bartlesville, OK 74003 D-76187 Karlsruhe

USA Germany

Singapore 637846 Tel.: +49 721 595 4234 Tel.: Tel.: +1 918 662 7000 +65 6897 7376 Fax: +49 721 595 6375 Fax: +1 918 662 7052 Fax: +65 6897 7353

www.sea.siemens.com/ia

E-Mail:processanalytics@siemens.com E-Mail: saaisales@sea.siemens.com E-Mail: splanalytics.spg@siemens.com

Siemens AG Automation and Drives D-76181 Karlsruhe Germany

www.processanalytics.com

Order No.: E86060-K3510-B181-A2-7600 Printed in Germany

KG K 0303 3.0 SR 32 En / 315135

A&D PI2 Regional Head Quarter

19A Tech Park Crescent

www.processanalytics.com